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Abstract 
In the present paper, an attempt has been made to carry 
out kinematic and dynamic analysis of a six-legged ro-
bot. A three-revolute (3R) kinematic chain has been 
chosen for each leg mechanism in order to mimic the leg 
structure of an insect. Denavit–Hartenberg (D-H) con-
ventions are used to perform kinematic analysis of the 
six-legged robot. The direct and inverse kinematic 
analysis for each leg has been considered in order to 
develop an overall kinematic model of a six-legged ro-
bot, when it follows a straight path. The problems re-
lated to trajectory generation of legs have been solved 
for both the swing and support phases of the robot. It is 
important to mention that trajectory generation problem 
during the support phase has been formulated as an op-
timization problem and solved using the least squared 
method. Lagrange-Euler formulation has been utilized to 
determine the joint torques. The developed kinematic 
and dynamic models have been examined for tripod gait 
generation of the six-legged robot. 

Keywords: Kinematic analysis, Dynamic analysis, Tri-
pod gait, Six-legged robot 

1 Introduction 

A multi-legged robot possesses a tremendous potential 
for maneuverability over rough terrain, particularly in 
comparison to conventional wheeled or tracked mobile 
robot. It introduces more flexibility and terrain adapta-
bility at the cost of low speed and increased control 
complexity [1]. In order to develop dynamic model and 
control algorithm of legged robots, it is important to 
have good models describing the kinematic behaviour of 
the complex multi-legged robotic mechanism. The 
mechanism of a legged robot can be considered as a 
partially parallel mechanism. Waldron et al. [2] analyzed 
the kinematics of a hybrid series–parallel manipulation 
system. Although the work on parallel mechanisms [3] 
forms a basis for legged-robot kinematic analysis, 
legged walking robots differ from parallel mechanisms 
in some important respects.  As Lee and Song [4] 

pointed out, the kinematics of a walking machine is 
complicated due to its many degrees of freedom. Usu-
ally legs of walking machines, during walking are lifted 
and placed according to a gait, so that the topology of a 
walking machine mechanism changes. Further, the con-
trol problem of a walking machine is significantly more 
complex than that of a parallel mechanism because a 
walking machine usually possesses more driven joints 
than that of a parallel manipulator. 

Howard et al. [5] discusses the kinematics of a walk-
ing machine using vector and screw algebra. Barreto et 
al. [6] developed the free-body diagram method for ki-
nematic and dynamic modeling of a six-legged machine. 
Erden [7] investigated the dynamics of a hexapod walk-
ing robot in a level tripod gait based on Newton-Euler 
formulation. Koo and Yoon [8] obtained a mathematical 
model for quadruped walking robot to investigate the 
dynamics after considering all the inertial effects in the 
system. A dynamic model of walking machine was de-
rived by Lin and Song [9] to study the dynamic stability 
and energy efficiency during walking.  Pfeiffer et al. 
[10] investigated the dynamics of a stick insect walking 
on flat terrain. Freeman and Orin [11] developed an effi-
cient dynamic simulation of a quadruped using a de-
coupled tree-structure approach. 
 
 Due to the complexity of a realistic walking robot, it 
is not an easy task to include the inertial terms in the 
modelling. The most of the works on walking dynamics 
were conducted with a simplified model of legs and 
body. But, in order to have a better understanding of 
walking, dynamics and other important issues of walk-
ing, such as dynamic stability, energy efficiency and on-
line control, kinematic and dynamic models based on a 
realistic walking robot design are necessary. Here, an 
attempt has been made to carry out kinematic and dy-
namic analysis of a real six-legged robot.  

2  Kinematics of Three Joint Leg 

The kinematic and dynamic analysis of walking robot 
can be divided into six main parts. Given position, orien-
tation, velocity, acceleration of the trunk body, initial 
feet positions and gait pattern, calculate the (i) joint dis-
placements based on suitable foot trajectory, (ii) joint 
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velocities and (iii) joint accelerations, (iv) support feet 
forces, and (vi) torques values of each joint during trans-
fer and support phases. 
To derive the kinematic model, the following assump-
tions are made: 
(a) The robot moves forward in a straight path on flat 

surface with alternating tripod gait.  
(b) The trunk body is held at a constant height and paral-

lel to the ground plane during locomotion. 
(c)  The center of gravity of the trunk body is assumed 

to be at the geometric center of the body. 
 
Fig. 1 shows a 3-D model of a six-legged walking robot 
considered in the present study. It consists of a trunk of 
rectangular cross-section and six legs, which are similar 
and systematically distributed around the trunk body on 
two sides. Each leg has three degrees of freedom and is 
composed of three links connected by the three rotary 
joints. The Denavit-Hartenberg (D-H) notations [12] 
have been used in kinematic modeling of each leg (refer 
to Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tables 1 and 2 show four D-H parameters, namely link 
length (ai), link twist (αi), joint distance (di), and joint 
angle (θi), required to completely describe the three joint 
legs.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
The links’ homogeneous transformation matrices have 
been presented as given below. 
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The resulting transformation matrix between foot tip 
reference frame {3} and leg or hip reference frame {0} 
is given as: 
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The six legs and the trunk body must be integrated to 
solve the kinematic problem of the robot. Consider the 
body attached reference frame is located at the geomet-
ric center of the trunk body. Leg ‘i’ coordinates in body 
reference frame are obtained using transformation ma-
trix as given below. 
 

xi
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The x, y and z coordinates of the foot tip point with re-
spect to leg reference frame {0} can be determined for 
given the joint variables: θ1, θ2 and θ3. The position of 
the foot is given by the following expressions: 
 
[L1+L2 cosθ2+L3 cos(θ2+θ3)] cosθ1 = px                (2) 
[L1+L2 cosθ2+L3 cos(θ2+θ3)] sinθ1 = py                (3) 
L2 sinθ2+L3 sin(θ2+θ3) = pz                (4) 
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Table 1: D-H parameters for left legs 
 

Link ai αi di θi 
1 L1 90° 0 θ1 
2 L2 0 0 θ2 
3 L3 0 0 θ3 

Table 2: D-H parameters for right legs 
 

Link ai αi di θi 
1 L1 -90° 0 θ1 
2 L2 0 0 θ2 
3 L3 0 0 θ3 

Fig. 1 CAD model of six-legged robot 

Fig. 2 D-H representation of link frame 
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By solving equations (2), (3) and (4), the joint angles : 
θ1, θ2 and θ3 have been determined as given below. 
θ1=atan2(py, px)     (5) 

( )2 2 2
2θ =atan2 c,± a +b -c -atan2(a,b)   (6) 

where ( )2 2
2 x y 1a=2L p +p -L ;  

b=2pzL2; ( )2
2 2 2 2 2
x y 1 z 2 3c= p +p -L +p +L -L⎡ ⎤

⎢ ⎥⎣ ⎦
. 

( )2
2 2 2 2 2
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-1
3

2 3

p +p -L +p -L -L
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2L L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (7) 

 

3  Foot Trajectory Planning  

The robot is assumed to describe a continuous alternat-
ing tripod gait (refer to Fig. 3) that consists of two main 
phases. In the first phase, legs: 1, 4, and 5 are in support 
and moving backwards at a specified trapezoidal veloc-
ity profile, while legs: 2, 3, and 6 are in their swing 
phase, moving forward to their next footholds. Each 
supporting foot tip follows a straight-line trajectory on 
the ground parallel to the trajectory of other supporting 
feet.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1  Swing Foot Trajectory 

To ensure a smooth functioning, each joint trajectory of 
swing legs is assumed to follow a polynomial of fifth 
degree in time (t). If θj is the angle of jth joint of a swing 
leg, fifth order polynomial can be expressed as follows:
 θj = aj0+aj1t+aj2t2+aj3t3+aj4t4+aj5t5,           (8) 
where aj0, aj1, aj2, aj3, aj4, and aj5 are coefficients, whose 
values are determined using a set of boundary conditions 
defined over the swing phase and j=1, 2, 3 joints. θj is 
considered to be positive in counterclockwise direction. 
The boundary conditions of angular displacement and 
angular velocity at initial, middle and final points of the 
trajectory are applied to find the six coefficients for each 
joint as shown in Table 3.  

Table-3: Coefficient values of joint trajectory  
 

Coefficient values Joint no. 
(j) aj0 aj1 aj2 aj3 aj4 aj5 
1 110 0 -2.667 -11.259 5.296 -0.790
2 -20.8 0 3.004 8.663 -6.777 1.185 
3 -61.8 0 0.116 0.367 -0.283 0.0494

 
 
 3.2  Support Foot Trajectory 
Fig. 4 displays the trapezoidal velocity profile of center 
of mass of the trunk body for each half cycle. The cycle 
time and maximum velocity of trunk body are assumed 
to be equal to 6 sec and 0.056 m/sec, respectively. 
 
 
 
 
 
 
 
 
 

 

 

 For smooth variation of the joint angles, their tra-
jectories are assumed to follow the fifth order polyno-
mial as shown below. 

θj = cj0+cj1t+cj2t2+cj3t3+cj4t4+cj5t5,           (9) 
where cj0, cj1, cj2, cj3, cj4, and cj5 are the coefficients. It is 
to be noted that the half cycle time (3 sec) has been 
equally divided into thirty intervals. The least squared 
method has been used to find six coefficients from thirty 
known values of θj.  The optimized coefficients are 
summarized in Table 4. 
 
Table-4: Optimized coefficient values of joint trajectory  

 
Coefficient values Joint 

no. (j) cj0 cj1 cj2 cj3 cj4 cj5 cj6 
1 70.16 -2.66 28.82 -20.8 7.17 -0.95 0.0
2 -20.80 -0.24 3.19 -4.79 3.06 -0.91 0.10
3 -62.03 3.50 -33.19 39.92 -22.1 6.19 -0.69

 

4  Dynamics of Six-legged Robot  

For deriving the dynamic equations and finding joint 
torques’ variations over the locomotion cycle, Lagrange-
Euler formulation has been used. The direct application 
of Lagrangian dynamics formulation together with De-
navit-Hartenberg’s link coordinate representation results 
in a convenient, compact, systematic algorithmic de-
scription of the  equations of motion. A systematic deri-
vation of Lagrange-Euler equations yields a dynamic 
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Fig. 4 Velocity profile of the trunk body of the robot 

Fig. 3 Gait Diagram (duty factor=0.5) 
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expression that can be written in the vector-matrix form 
as given below. 

Tτ = M(θ)θ+ H(θ,θ) + G(θ) + J F ,          (10) 
where M(θ) is the 3×3 inertia matrix of the leg, H is a  
3×1 vector of centrifugal and Coriolis terms, G(θ) is a 
3×1 vector of gravity terms, τ  is the 3×1 vector of joint 
torques and F is the 3×1 vector of ground contact forces. 
During the leg’s swing phase, there is no foot-terrain 
interaction, and F becomes equal to zero. However, dur-
ing the support phase, ground contact exists and equa-
tion (10) becomes undetermined. For computing foot-
force distributions, the following assumptions are made: 
(i) The ground legs are assumed to be supporting the 
trunk body without any slippage on their tip points.  
(ii) The contacts of the tip of the feet with ground can be 
modeled as hard point contacts with friction, which indi-
cates that the interaction between the tip of the leg and 
ground is limited to three components of force: one nor-
mal and two tangential to the surface.  
 

Let us assume that Fpqr=[Fp, Fq, Fr]T is the foot-
force vector, when the legs: p, q and r are in support 
phase, where Fi=[fix, fiy, fiz]T is the ground-reaction force 
on foot i, where i=p, q, r. In the first phase of tripod gait, 
p, q and r are the legs: 1, 4, and 5, respectively, and dur-
ing the next phase, the legs: 2, 3, and 6 will be in the 
support phase. The wrench W=[ Fx, Fy, Fz, Mx, My, Mz]T 
contains the forces (Fx, Fy, Fz) and moments (Mx, My, 
Mz) acting on the robot’s center of gravity and repre-
sents the robot’s payload, including the effect of surface 
gradient, any externally applied forces and inertial ef-
fects of the robot’s body. However, the inertial effects of 
the legs have been neglected to simplify the study. Un-
der these conditions, six equilibrium equations that bal-
ance forces and moments, when three legs, namely p, q, 
and r are in their support phase, can be obtained as fol-
lows: 
 

ix
i=p,q,r

f +F =0∑ x   

iy
i=p,q,r

f +F =0∑ y   

iz
i=p,q,r

f +F =0∑ z   

i iz i iy c z c y x
i=p,q,r i=p,q,r

y f - z f +y F -z F +M =0∑ ∑   

i ix i iz c x c z y
i=p,q,r i=p,q,r

z f - x f +z F -x F +M =0∑ ∑   

i iy i ix c y c x z
i=p,q,r i=p,q,r

x f - y f +x F -y F +M =0∑ ∑  

 
These equations are normally written in a matrix form as 
follows: 
  Apqr.Fpqr = (- B.W) (11) 
where  

3 3 3
pqr

p q r

⎡ ⎤
⎢ ⎥
⎣ ⎦

I I I
A =

R R R
;  and 3 3

c 3

⎡ ⎤
⎢ ⎥
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I 0
B =

R I
 

I3 is the (3×3) identity matrix, 03 is the (3×3) null matrix 
and Ri is the (3×3) skew symmetric matrix of vector [xi, 
yi, zi]T. 

i i

i i i

i i

0 z y
z 0 x
y x 0

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

R  and 3

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I  

 
This matrix defines the position of tip of a foot i (i=p, q, 
r) or that of center of gravity (i=c) with respect to body 
reference frame. The coordinates of ith foot-ground con-
tact point with respect to body reference frame, located 
at the body’s geometric center, are denoted by (xi, yi, zi).  

 With the known feet positions, the feet forces dur-
ing a whole locomotion cycle can be computed using 
equation (11), which is indeterminate, because it con-
sists of six equations but there are nine unknowns. The 
solution of equation (11) has been obtained using the 
least squared method. 

 
5  Simulation Results  
 
 In this section, simulation results of the above mathe-
matical model have been discussed in detail.  Table 5 
shows the physical parameters of each leg of the six-
legged robot used in computer simulations. The leg 
stroke of the tripod gait and body height are assumed to 
be equal to 0.14 m and 0.13 m, respectively. 
 
 
 

 

 
 
 

 
Fig. 5 shows the distributions of foot reaction forces of 
legs: 1, 4 and 6 during their support phase over half lo-
comotion cycle.  It is to be noted that similar distribu-
tions of foot reaction forces of legs: 2, 3 and 5 during 
their support phase over half locomotion cycle have 
been obtained.  Moreover, the front and rear legs com-
plement each other in force, such that sum of the vertical 
forces of all the ground legs at any given instant of time 
becomes equal to the weight of the robot.  It has been 
observed that the middle legs are subjected to maximum 
force of up to 19.7 N, while the maximum force acting 
at corner legs are found to be equal to 15.9 N. It has 
happened so, due to the fact that the foot force depends 
on that leg’s foot position relative to center of mass of 
the trunk.  
 
Joint torques are comprised of three components, 
namely inertial term (M-term), centrifugal and Coriolis 
term (H-term) and gravity term (G-term).   

Table- 5: Physical parameters of each leg  
 

Link parameters Link 1 Link 2 Link 3 
Mass (kg) m 0.152 0.04 0.106 

Length (10-3 m) L 85 115 100 
Ix 1.00 0.23 0.22 
Iy 8.28 3.07 10.00 

Moment of In-
ertia 

(10-4 kg-m2) Iz 9.09 2.91 10.01 
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Fig. 6: Contribution of M, H and G terms on torques at joint 1, 2 and 3 during swing phase of left side legs 

Fig. 7: Contribution of M, H and G terms on torques at joint 1, 2 and 3 during swing phase of right side legs 

Fig. 5: Foot reaction forces for half cycle (when legs 1, 4 and 5 are on ground) 
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Figs. 6 and 7 show the contributions of inertia, centrifu-
gal/Coriolis and gravity terms on torque of joints: 1, 2 
and 3 during swing phase of left side legs and right side 
legs, respectively. It is important to note that the gravity 
has only negligible effect on torque of joint 1, on which 
the inertia has significant contribution. Torques of 
joints: 2 and 3 are mainly dependent on the gravity, and 
the effect of inertia and centrifugal/Coriolis terms are 
found to be negligible. Fig. 8 represents the variations of 
joint torques in each joint of the legs during their sup-
port phase. It is interesting to note that for a particular 
ground leg, the maximum torque generated at joint 2 is 
more compared to that at other two joints. The torque 
values of joint 2 vary in the range of 1.830 Nm to 2.055 
Nm for the middle legs and those for other legs are seen 
to lie in the range of 0.35 Nm to 1.69 Nm. It is also in-
teresting to note that the maximum torque required at 
joints: 1 and 3 of all the legs is found to be equal to 0.22 
Nm. Thus, the maximum torque required at joint 2 is 
seen to be about 8 to 9 times of that at other joints 
(namely joints: 1 and 3). Moreover, joint torques of the 
legs during the support phase (refer to Fig. 8) have come 
out to be much more than those during the swing phase 
(as shown in Figs. 6 and 7), as expected. 
 
 
 
 

 
6  Conclusions 

Both the kinematic as well as dynamic analyzes of a six-
legged robot have been carried out in the present study. 
The direct and inverse kinematic analysis for each leg 
has been conducted in order to develop the overall ki-
nematic model of a six-legged robot. The problems re-
lated to trajectory generation of legs have been solved 
for both the swing and support phases of the robot. It is 
important to mention that trajectory planning problem 
during the support phase has been solved using the least 
squared method. An attempt has been made in present 
study to obtain optimal distributions of feet forces. It has 
been observed that the middle legs are subjected to more 
force than corner legs. Joint torques have been calcu-
lated using Lagrange-Euler formulation of the rigid 
multi-body system. The developed kinematic and dy-
namic models have been examined for tripod gait gen-
eration of the six-legged robot. This work can be ex-
tended to tackle the problems related to tetrapod and 
non-periodic gait of the walking robot. 

 
 
 

Fig. 8: Variations of joint torques of each leg during their support phase 
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