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Abstract
This paper deals with the problem of determining conclu-
sively if a given spatial trajectory of a semi-regular Stew-
art platform manipulator (SRSPM) passes through singular-
ities. The algorithm presented here is restricted to trajecto-
ries defined in terms of polynomial functions of a contin-
uous path parameter. As such it can complement existing
motion-planning strategies which use piecewise continuous
cubics or other polynomials to describe the trajectories. The
algorithm, however, can be extended to functions such as
rational or trigonometric, which can be reduced readily to
polynomial forms.

The advantage of the formulation presented here is that
the computation is relatively simple and the results are guar-
anteed theoretically. Further, if a given trajectory does pass
through a singularity, the algorithm returns the set of points
where it does so. The theory presented in the paper is il-
lustrated with numerical examples involving 3-D and 6-D
trajectories defined in terms of cubic polynomials in a single
path parameter.
Keywords: Stewart platform, Singularity, Trajectory verifi-
cation, Cubic spline and Polynomials

1 Introduction
Parallel manipulators, such as the Stewart platform, are be-
coming increasingly popular due to their demonstrated ad-
vantages over the serial counterparts in terms of load ca-
pacity, rigidity, accuracy and speed. However, one of the
inherent problems in such manipulators is the existence of
singularities within their workspaces. In general, for a par-
allel manipulator, it is difficult to find a description of the
singularity manifold which is easily amenable to analysis.
Consequently, the task of planning of a desired path or tra-
jectory which is provably free of singularities is fairly hard.

In this paper, we take a step closer to the final objective
stated above. We propose a formulation which can test a
given trajectory, with guarantee, for singularities. In case the
trajectory does have singular poses of the manipulator within
it, these are obtained assuredly. The theory presented here
builds on the results on the singularity manifold of an SR-
SPM presented in [1]. The present form of the algorithm has
the following restrictions:

• The algorithm depends on closed-form expressions de-
scribing the singularity manifold. To the best of the
author’s knowledge, such expressions have been de-
rived only for the case of a SRSPM in which both the
fixed and moving platforms are hexagonal in shape,
and in each platform, the alternate sides have equal
lengths. Therefore, the scope of the present work is
restricted to that manipulator. However, it is worth
noting at this point that most of the Stewart platform
manipulators used in research or industries do fall in
this category.

• It is assumed that the desired trajectory is defined in
terms of polynomial expressions of a single path pa-
rameter. This restriction is crucial to the formulation,
as the “guaranteed” nature of the results derives from
the fact that the problem of the intersection of a given
trajectory with the singularity manifold is reduced to
solving a univariate polynomial equation. However,
this requirement is not very restrictive as there are
existing motion planning algorithms based on cubic
splines (see, e.g. [2] and the references therein) and
the present algorithm can complement these naturally.
Further, rational and trigonometric equations can be
converted into polynomial equations with some ma-
nipulation, and therefore trajectories described in terms
of these can also be validated in the above formula-
tion, albeit with some additional effort in pre-processing.

• Potentially, the most severe drawback of the proposed
algorithm is that it requires a robust numerical tool
for solving univariate polynomial equations. The final
equation to solve can be easily of moderate to very
high degree (e.g. of degree 27 if all the six pose pa-
rameters are described in terms of cubic functions of
the path parameter). While such solvers are readily
available in most commercial packages or numerical
codes, one still needs to be careful in checking the
numerical accuracy of the end-results before trusting
them.

The paper is organised as follows: in section 2, the de-
tailed theoretical formulation is presented. In section 3, a
few numerical examples are presented. Finally, the conclu-
sions are presented in section 4.
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2 Formulation
The algorithm proposed in this paper can be discussed in two
parts:

1. Approximation of the given trajectory in terms of piece-
wise continuous polynomial functions of the path pa-
rameter.

2. Exact verification each segment of the above trajec-
tory for singularity.

The focus of the paper is on the second part, where it is
assumed that such a description of the trajectory is avail-
able to that part of the algorithm. However, for the sake of
completeness, we describe below why such a description is
needed, and indeed, it can be constructed with reasonable
effort based on methods established in literature.

2.1 Approximation of input trajectory
In general, the SRSPM can execute a trajectory in which all
the configuration variables, expressed as functions of time,
can show substantial variety and complexity. However, in
this work, we will start by imposing some structure to the
actual trajectories, and that we will do by approximating the
desired trajectory using a model, cubic-splines in this case.
This step is necessary for two reasons:

• Firstly, in many applications, the desired trajectory
of an SRSPM is fairly complicated, and difficult to
be commanded directly to the manipulator. For in-
stance, these manipulators are widely used as motion
simulators for aircrafts and ground vehicles, wherein
the desired trajectories are essentially the numerically
computed responses of the mathematical models rep-
resenting such mechanical systems. Therefore, such
trajectories are defined only at discrete points, and re-
quire to be approximated by continuous functions be-
fore they can be commanded to the actual manipulator.

• Secondly, even if the desired trajectories be available
as a set of continuous functions of time, it is diffi-
cult in general, and indeed impossible in certain cases,
to validate them conclusively for singularities. The
singularity conditions are available as trigonometric
and/or polynomial equations [3, 4, 5, 6, 1]. In or-
der for an exact check against singularities, the com-
manded trajectories when incorporated into the sin-
gularity conditions should generate a system of equa-
tions, of which all roots can be computed, at least nu-
merically. If, for instance, there is an exponential term
in any of the trajectories, then the resulting set of poly-
nomial/trigonometric and exponential equations can-
not be solved even numerically to obtain all the solu-
tions in general. The only forms of functions compat-
ible with the existing conditions for singularity are the
trigonometric, polynomial and rational functions. We
will adopt the polynomial form in this work, since our
description of singularity following [1] is polynomial
in nature.

2.2 Verification of the trajectory
In the following, we describe how the trajectory developed
above can be checked for singularity using our algorithm.
Since the present focus is on the SRSPM, a description of
the manipulator may be in order.

2.2.1 Geometry of the SRSPM

As mentioned earlier, the SRSPM has hexagonal top and
bottom platforms, with alternate sides in each platform hav-
ing identical length. There is a 3-way symmetry in each
platform, and the adjacent pairs of legs are arranged sym-
metrically about the three radial lines of symmetry in each
platform. The angular spacings between the adjacent pairs of
legs are denoted by 2γt , and 2γb for the top and bottom plat-
forms respectively. The manipulator along with the frames
of reference used is shown in figure 1(a), and the bottom
platform, in figure 1(b).

Without any loss of generality, the radius of the circum-
circle of the bottom platform is scaled to unity1 and thereby
one architectural parameter is eliminated from all subsequent
calculations. Radius of the circum-circle of the top platform
is denoted by rt .

The centre of the top platform is described in the base
frame as p = (x,y,z)T ∈ R

3. Its orientation is described by
the rotation matrix R∈ SO(3) with respect to the base frame.

2.2.2 Mathematical development
Consider the motion of the SRSPM such that p moves from p1
to p2 in time t ∈ [0,T ]. Simultaneously, R changes from R1
to R2. It is obvious that the path2 traced by the platform can
be parametrised by s ∈ [0,1] such that p(s = 0) = p1 and
p(s = 1) = p2 and p(s) gives the position of the centre of
the top platform at any instance and so on. It is fairly com-
mon in robotics literature to approximately fit such a path
in terms of piece-wise continuous cubic polynomials (see,
e.g. [7]). Obviously, a similar description can be achieved
through cubic-splines.

For approximating the orientation, once again a cubic spline-
based method is followed. Kang and Park [2] presents orien-
tation interpolation schemes in terms of cubic splines. In this
paper, we interpolate orientation in terms of cubic splines in
the domain of Rodrigue’s parameters. Suppose, the desired
orientation is specified at the points s = 0,s1,s2, . . . ,sn−2,sn−1,1,
in terms of rotation matrices Ri = R(si) ∈ SO(3). The ma-
trix Ri can be reduced to the axis-angle form in terms of
the rotation axis u ∈ R

3, ‖u‖ = 1 and rotation angle θ ∈
[0,π] (see, e.g. [7]). From these it is easy to calculate the
corresponding Rodrigue’s parameters:

c = (c1,c2,c3)
T = u tan(θ/2) (1)

1We use radians for the angular unit, while the length unit for base plat-
form can be chosen as convenient. All other length entities appearing in the
paper are non-dimensionalised accordingly.

2In this context, the term path is used to include the variation in orienta-
tion as well as the position of the top platform.
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Figure 1: Geometry of the Stewart platform manipulator

Once the parameters c are calculated at the nodal points, they
can be interpolated through a cubic formulation, such that
the resulting continuous description of orientation in terms
of the path parameter is given by:

c j(s) = c j0s3 + c j1s2 + c j2s+ c j3,

s ∈ [si,si+1], j = 1,2,3 (2)

where the subscript i serves to indicate the ith interval in the
parameter space. A similar formula can be obtained easily
for the position, p(s) = (x(s),y(s),z(s))T , i.e.

x(s) = x0s3 + x1s2 + x2s+ x3

y(s) = y0s3 + y1s2 + y2s+ y3 (3)
z(s) = z0s3 + z1s2 + z2s+ z3, s ∈ [si,si+1]

2.3 Validation of the trajectory
Once the configuration parameters, x(s),y(s),z(s) and c1(s),c2(s),c3(s)
are obtained as above, they are inserted in the singularity
condition. As noted in [1], the condition is given by:

E1x2z+E2x2 +E3xyz+E4xy+E5xz2 +E6xz+E7x
+E8y2z+E9y2 +E10yz2 +E11yz+E12y+E13z3

+E14z2 +E15z+E16 = 0 (4)

where Ei, i = 1, . . . ,16, are functions of the architecture vari-
ables of the SRSPM and its orientation parameters c. In par-
ticular, c1,c2,c3 appear in Ei’s only as polynomials.

The expressions for Ei are too big to be included here.
However, two of them are quoted below as illustrations [1]:

E14 =8(c1
2 + c2

2 − c3
2 −1)rt sin(γ+3γt)((c3c1

3

−3c2c1
2 −3c2

2c3c1 + c2
3)cos(γ+3γt)

+(c1
3 +3c2c3c1

2 −3c2
2c1 − c2

3c3)sin(γ+3γt))

× sin2(γ)+8(c1
2 + c2

2 + c3
2 +1)× sin(2γ+3γt)

× ((c3c1
3 +3c2c1

2 −3c2
2c3c1 − c2

3)cos(2γ+3γt)

− (c1
3 −3c2c3c1

2 −3c2
2c1 + c2

3c3)sin(2γ+3γt))

× sin2(γ) (5)
E15 =−8(c1

2 + c2
2)(c1

2 + c2
2 − c3

2 −1)rt
2 sin(γ)

× ((c3
2 −1)cos(γ)−2c3 sin(γ))sin2(γ+3γt)

+8(c1
2 + c2

2)(c1
2 + c2

2 + c3
2 +1)sin(γ)

× ((c3
2 −1)cos(γ)−2c3 sin(γ))sin2(2γ+3γt)

+(c1
2 + c2

2)rt (−4c3
3 +4(c3

2 −1)cos(4γ)c3

+4c3−2(c3
2 +1)2 sin(2γ)

+4cos(6γt)((c3
2 −1)cos(γ)

−2c3 sin(γ))2(sin(2γ)− sin(4γ))+(3c3
4 −2c3

2 +3)

× sin(4γ)+8(2cos(2γ)+1)sin2(γ)(−cos(γ)c3
2

+2sin(γ)c3 + cos(γ))2 sin(6γt))

where γ = γb − γt . As can be seen in equation (4), equa-
tion (5) respectively, the singularity condition is of degree 3
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in x,y,z and degree 6 in c1,c2,c3. It may be noted here that
though all the Ei’s have not been presented here, E14,E15 are
indeed representative in this regard. Therefore, when equa-
tions (2, 3) are used in equation 4, we obtain a univariate
polynomial in the path parameter s, whose degree, in the
general case is given by 3×3+3×6= 27.

In principle, all the roots of the polynomial equation can
be obtained, albeit numerically. If there are real roots in the
interval under consideration, i.e. s ∈ [si,si+1], then the tra-
jectory meets with singularity in that interval. Otherwise,
the whole interval is free of singularities3.

3 Illustrative examples
In this section, we demonstrate the formulation presented
above through a few numerical examples. We adopt the ar-
chitectural parameters from the INRIA manipulator as de-
scribed in [1]:

rt = 0.5803, γb = 0.2985 rad, γt = 0.6573 rad.

For the sake of simplicity, we consider the motion interval
as s ∈ [0,1] and note that this does not cause any loss of
generality.

3.1 Example 1: motion with constant orienta-
tion

In this case, we assume the constant orientation to be given
by the Rodrigue’s parameters:

c1 = 0, c2 = 0.1, c3 = 0.1

The chosen end points are:

p1 = (−0.5,−0.5,0.5)T , p2 = (0.5,0.5,1)T

The desired path is a straight line from p1 to p2. The motion
is taken to start and stop with zero velocity, leading to the
following parameterisation of the path:

x(s) = −2s3 +3s2−
1
2

y(s) = −2s3 +3s2−
1
2

z(s) =
1
2

(

3s2 −2s3)+
1
2 , s ∈ [0,1]

The numerical form of the univariate polynomial equation in
s is given by4:

0.482678s9−2.17205s8 +3.25808s7−2.1713s6

+1.62679s5−1.22009s4 +0.20512s3

−0.30768s2−0.0263167 = 0 (6)
3It is possible to obtain a real root for s outside the interval concerned.

However, that is not of any consequence as the equation (4) is valid only in
one interval at a time.

4All the numerical values in this paper are correct up to the seventh place
after the decimal point. However, for the sake of brevity, the trailing zeros
have not been included.

It turns out that the only real solution of the polynomial is
s = 1.65682, which is outside the relevant range of s. There-
fore it can be stated conclusively that the above trajectory is
free of singularity.

3.2 Example 2: motion with constant position
In this example, we fix the position at:

p(s) = p1 = (−0.5,−0.5,0.5)T , s ∈ [0,1]

The orientation parameters change from

c1 = (0,0.1,0.1)T

to
c2 = (6,3.1,6.1)T

The desired orientation trajectory is taken to consist of arbi-
trary cubic functions of s, except that the end conditions are
satisfied:

c1(s) = s3 +2s2 +3s
c2(s) = s3 + s2 + s+0.1
c3(s) = 3s3 +2s2 + s+0.1, s ∈ [0,1]

As expected, this results in a polynomial of degree 18, given
below:

−286.55s18−1541.52s17−4642.01s16−8977.38s15

−11840.9s14−10137.s13−4403.48s12 +1483.37s11

+4684.03s10 +4522.8s9 +2564.23s8 +723.751s7

−75.2902s6−128.399s5−65.2046s4−22.994s3

+10.7222s2 +0.042965s−0.0263167= 0 (7)

In this case, there are a number of real roots in [0,1]:

s = 0.0507524, 0.250645, 0.346431, 0.786169

Therefore it is clear that the trajectory passes through singu-
lar configurations corresponding to the four values of s given
above.

3.3 Example 3: general spatial motion
In this case both the above motions take place simultane-
ously, i.e. p(s) varies from p1(s) to p2(s), and c(s) varies
between c1(s) and c2(s) along the trajectories defined above.
The singularity condition reduces to a degree 27 equation in
s in this case:

−2324.34s27−1649.52s26 +2304.26s25 +16225.6s24

+18471.6s23 +3630.12s22−34359.2s21−55269.5s20

−33314.7s19 +38913.3s18 +96743.9s17 +70623.9s16

−44537.7s15−172359.s14−225083.s13−200538.0s12

−133203.s11−66127.1s10−20385.7s9−779.352s8

+2502.97s7 +929.977s6 +39.8743s5−45.4224s4 (8)
−22.1957s3 +10.4146s2 +0.042965s−0.0263167= 0

The trajectory is seen to encounter singularities at s = 0.0512808,
0.302583.
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4 Conclusion
It has been shown in this paper how the task of validation
of the spatial trajectories of an SRSPM can be reduced to
the finding the real roots of a univariate polynomial within
a given range. If the desired trajectories, approximated by
cubic polynomials in terms of a path parameter are actually
commanded to the manipulator, then the validation results
are guaranteed, provided the numerical coefficients and the
roots of the univariate polynomial are calculated reliably.
Several numerical examples have been provided to illustrate
the formulation developed in the paper.

To the best of the author’s knowledge, the present method
for trajectory validation is novel. It provides an improve-
ment over the methods of grid-based checking, of which
the results are not guaranteed. It is hoped that the present
work would help researchers in the process of developing
singularity-free trajectories for SRSPM’s and similar manip-
ulators.
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