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Abstract 

In this paper, the issue of control of impact forces generat-
ed during the interaction between the hopping robot toe 
and the ground during landing has been considered. The 
force thus generated can damage the robot altogether. With 
the objective to control these impact forces impedance 
control strategy has been applied to the hopping robot sys-
tem. The dynamics pertaining to the impact between robot 
toe and ground has been modeled as in case of a ball 
bouncing on the ground. Bond Graph theory has been used 
for the modeling of the hopping robot system. Simulation 
results show that impact forces generated during the land-
ing has been controlled to a specified limiting value. This 
model and the corresponding analysis can be further ex-
tended for understanding the dynamics involved in conti-
nuous hopping of robot with constant height and velocity 
control. 

Keywords: Hopping robot, Impact forces, Impedance con-
trol  
 
1 Introduction 

In recent years, legged robots, especially biped robots, 
have been developed to the extent that human-like walking 
has become possible. In the next stage, robots need to 
move faster and get over larger obstacles. In this respect, 
hopping robots offers a potential solution. Due to the pos-
sibility of adjusting the stride length irrespective of the 
structural limits of a hopping robot, it can move faster and 
avoid larger obstacles than walking. Hopping robots can 
move with greater dexterity in an environment characte-
rized by holes, steps and bumps. But an important issue 
related to hopping robot locomotion is reducing the impact 
force from the ground at the instant of robot landing which 
may, otherwise, cause damage to robot.  

In order to resolve this problem, Raibert [1] used 
hydraulic cylinders and Hyon et al. [2] used mechanical 
springs in their robotic legs. However, Hydraulic cylinders 
don’t have enough control performance, especially in the 
edge of the cylinders. Considering hopping as an extended 
function of walking, use of mechanical springs makes the 
hopping robot highly dependent on spring characteristics 
and the control to be complicated. Hence, suppressing im-
pact force in the landing phase without cylinders or me-
chanical springs is a big issue to be dealt with. In addition 
to the force control during landing, it is also important to 
achieve a desired position of center of gravity (CG) of the 

hopping robot at the bottom most point i.e. bottom of 
stance phase. This ensures good trajectory robustness dur-
ing the next hop.  

In order to deal with these issues, Sato et al. [3] 
has used a combined method of soft landing trajectory of 
robot body and optimal approach velocity to the ground. 
Fujii and Ohnishi [4] investigated this issue further and 
proposed a smooth transition method from compliance 
control to position control. However these methods could 
not achieve the desired objective of constant force control 
during the landing phase and precise position control at the 
bottom. 

 In this paper the issue under consideration is 
dealt with by controlling the driving point stiffness (im-
pedance) at the interaction port between hopping robot toe 
and the physical ground i.e. environment. Pathak et al. [5] 
have used this control strategy employing passive degree 
of freedom (DOF) in controller domain for the control of 
interaction forces between space robot tip and environment. 
The proposed controller deals adequately with the issue of 
force (compliance) control i.e. reducing ground impact 
forces at touchdown and position control at bottom so as to 
prepare hopping robot for the next hop. Bond Graph theory 
[6] has been used for the modeling of the hopping robot 
system. Simulations have been performed using SYM-
BOLS Shakti [7], bond graph modeling software. 

The paper is organized as follows. Section 2 
presents the modeling of the impact of hopping robot toe 
with ground as in case of a ball bouncing on ground. Sec-
tion 3 presents the dynamic modeling of a hopping robot. 
Section 4 describes the impedance control scheme being 
used to control the hopping robot and presents the corres-
ponding simulation results. Section 5 discusses the results 
and proposes the future work. 

2 Modeling of Impact between Hopping 
Robot Toe and Ground 

This section presents the modeling of impact dynamics of 
a hopping robot toe with ground. The modeling of the 
phenomenon is inspired from the dynamics of a ball hitting 
the ground [8]. Fig. 1 shows a schematic figure 
representing the impact of a ball with ground. The Y-axis 
of the absolute (inertial) reference frame {A} shown in the 
figure represents the direction of vertical motion of the ball. 
In Fig. 1, yB and yG represents the displacement of ball and 
ground with respect to the frame {A}. Similarly, VB  and VG 
denote the velocities of the ball and the ground respective-
ly with respect to the inertial reference frame. 
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 The velocity of the ball and the ground can be 
derived by considering their kinematics relationships as: 

/B BV dy dt= ,                                                                    (1) 

/G GV dy dt= .                                                                   (2) 

Hence Vr, relative velocity of ball with respect to the 
ground can be written as,  
Vr=VB - Vg                                                                             (3)                                                                                                                                        
Hence, ‘yr’ relative displacement of the ball with respect to 
ground or specifically the point of contact is represented as, 

0
0
( )

t

r B Gy y V V dτ= + −∫ .                                                   (4) 

The general system equation for the contact between 
ground and ball is given by: 

BdV
m mg F

dt
= − + ,                                                          (5) 

G
G

dy
b ky F

dt
+ = − ,                                                           (6) 

where b is the damping coefficient and k is the spring con-
stant used to model impact between the ball and the 
ground through spring-damper model. F is the Ground 
Impact Force generated due to ball-ground interaction and 
can be evaluated using Eq. (6). Modeling impact between 
two contact surfaces through spring-damper model is cate-
gorized as continuous contact dynamics modeling. In this 
modeling the normal contact force between the contact 
surfaces is an explicit function of local indentation δ and 
its rate [9].  In the case of ball-ground interaction the 
ground impact force F is a function of yr. If yr >0 it implies 
there is no indentation on either the ground or ball and 
hence F is equal to zero. The ball will be performing bal-

listic motion under such a situation. The existence or non-
existence of the effect of ground-ball contact on the 
ground impact force can be expressed through Eq. (7) and 
(8). These equations represent switching of values of pa-
rameters b and k between zero and certain finite values. 

(0, )rb b swi y= ∗  ,                                                            (7) 

(0, )rk k swi y= ∗ ,                                                  (8) 

where swi defines a function such as (0, ) 1rswi y = , for 0 ≥ 
yr, and (0, ) 0rswi y = , for 0 < yr. 

Hence when yr >0 i.e. ball is not in contact with the ground, 
from Eq. (7) and (8) we get 0b k= = . Hence, ground im-
pact force F is equal to zero. Substituting 0F =  in Eq. (5) 

and (6), we get   
2

2
Bd y

m mg
dt

= −  .                             (9)              

When the ball hits the ground, yr =0. From that moment, 
the ball and the ground move as if a single system. The 
system equation governing the ball-ground system during 
contact phase is obtained by combining Eq. (5) and (6) and 
is expressed as, 

 
2

2
G G

G
d y dy

m b ky mg
dtdt

+ + = −                                        (10) 

The motion of the ball and ground together as a single sys-
tem consists of two phases. In the first phase the spring 
compresses until the ball velocity drops to zero. In the 
second phase, the spring expands during which the ball 
starts rebounding. During the entire contact phase the rela-
tive displacement of the body with the ground is equal to 
or less than zero and the detachment occurs when it is pos-
itive again.  
 The bond graph implementation of the impact 
dynamics between the ball and the ground is shown in Fig. 
2. Here it is assumed that the ground has zero velocity. 
Hence the ground velocity junction does not appear in the 
bond graph in fig. 2. 

 
 

Fig. 2 Bond Graph representing Impact 
dynamics between Ball and ground

Fig. 1: Schematic diagram representing impact be-
tween ball and ground 
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The parameters used for the simulation are mB = 1.0 kg, 
spring stiffness (k) = 106 N-m, damping coefficient (b) = 
60N-s/m, Initial height of the ball above the ground (h) = 
1.0m. The corresponding simulation results are 
represented in Fig. 3. It can be noted from Fig. 3(a) that 
the bouncing height over the consecutive hops decays con-
tinuously. Fig. 3(b) shows the development of contact 
forces when ball comes in contact with ground. It should 
be noted that as since the ground impact force model is 
based on a linear spring damper system the forces are gen-
erated whenever there is an indentation/penetration of the 

contact surfaces. Fig. 3(c) shows the bouncing ball veloci-
ty which decays as time increases. It can be noted from the 
figure that there is a change in momentum before and after 
each successive impact. 

 Thus the ball bouncing over ground furnishes a 
simple model of impact between two bodies.  It is used in 
the next section for the modeling of impact of a hopping 
robot toe with the ground. 

3 Dynamic Modeling of a Hopping Ro-
bot 

The hopping robot is modeled as a two mass system based 
on work carried out by Sato et al. [3]. The first mass is 
body and the second mass is assumed to be concentrated at 
its leg tip (toe). The two mass points are connected by a 
linear motor. A schematic of the hopping robot is shown in 
Fig. 4. The impact dynamics between the robot toe and the 
ground is modeled on the basis of work presented in the 
previous section on ball bouncing on the ground. Fig. 5 
shows the bond graph of the hopping robot including the 
representation of robot toe-ground interaction. 

The equations of motion of the hopping robot are 
given as: 

A
b b m bm z F m g= − −&&                                                    (11) 

A
t t m env tm z F F m g= + −&&                                              (12) 

Here mb is the mass of the body; mt is the mass of the toe, 
{A} represents the absolute frame which is located at the 
ground. Fm is the force generated by a linear motor. The 
ground is modeled as spring-damper. Fenv is the reaction 
force from the environment (ground). Kg and Rg are spring 
constant and damping coefficient of the ground respective-
ly.  

The phases and events of a typical hopping cycle are pre-
sented in the Table 1. The system parameters are listed in 
Table 2. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3(a) Ball Bouncing height (b) Ground Impact Force 
(c) Ball Bouncing Velocity 

Fig. 4 Schematic diagram of a one-legged 
hopping robot 
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In the next section, an impedance controller is de-
signed along with the hopping robot system to attain the 
desired control of impact forces. 

 

4 Impedance Control of the Hopping 
Robot  

The impedance of a system at an interaction port is def 
ined as the ratio between the output effort and the input 
flow. For applications, demanding a robotic controller to 
achieve balance between the two characteristics viz. robust 
trajectory tracking and accommodation of environmental 
disturbances, the impedance control strategy [6] is best 
suited.  

The impedance control strategy, with regard to 
the problem under consideration, is based on the body mo-
tion compensation. The body motion compensation is so 
designed that the hopping robot impedance can be mod-
ulated to limit the forces of interaction between hopping 
robot toe and ground. The control paradigm establishes a 
proper relation between the trajectory controller and the 
force controller through the manipulation of the impedance. 
The robot stiffness is made very high during trajectory 
control, and appropriately modulated during force control. 
Fig. 6 shows the bond graph model of hopping robot with 
impedance controller.  

In this figure fref is the reference velocity com-
mand for the toe of hopping robot. To incorporate the hop-
ping robot body disturbances in the inertial coordinates, 
the body velocity is sensed and feedback to the controller. 

A gain of α shows the feedback compensation. µH 
represents an effort amplifier. The transfer function be-
tween the output flow Ft(s) (i.e., the toe velocity) and the 
input effort Eenv(s) (force input from the ground to the toe) 
represents the admittance Yrob(s) of the robotic system at 
the interaction port. The impedance Zrob(s) is the inverse of 
the admittance. Admittance at the interaction port can be 

Fig.5. Bond graph model of inte-
raction of a one legged hopping 
robot with the ground 

 

Fig. 6: Bond graph of hopping robot with impedance 
controller 

Table 2: Hopping Robot Parameters 

Parameters Symbol Value 
Body mass mb 1.3kg 
Leg Mass mt 1.0kg 

Spring coefficient used to 
model impact between the 

leg tip and the ground 

Kg 5000N/m 

Damping coefficient used 
to model impact between 
the leg tip and the ground 

Rg 10N-s/m 

Body Length Lb 0.5m

Table 1: Hopping Cycle 
Event 

Top Body CG is highest 
Touchdown Leg Tip touches ground 

Bottom Body CG is lowest 
Liftoff Leg Tip leaves ground 

Phase 
Stance From touchdown to liftoff 

Landing From touchdown to bottom 
Thrusting From bottom to liftoff 

Aerial From liftoff to touchdown 
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determined from the bond graph shown in Fig. 6. The body 
and toe weights are not considered in this analysis as they 
can be treated separately as the disturbance force.  Now, 
applying the constitutive law at junction ‘1’ corresponding 
to robot toe, we obtain 

12 14 15( ) ( ) ( )e t e t e t= − , 
Taking Laplace transform on both sides of above expres-
sion, we obtain 

12 14 15( ) ( ) ( )E s E s E s= − ,                                                (13) 

14 14( ) ( )t
de t m f t
dt

= ,                                                       (14) 

Where, e (t) and f (t) are respectively the effort (genera-
lized force) and flow (generalized velocity) variables asso-
ciated with corresponding bonds of Bond Graph. Taking 
Laplace transform on both sides of Eq. (14) yields, 

14
14 14

( )
( ) ( )

( )t
t

F s
E s M sF s

P s
= =  .                                         (15) 

From the bond graph, using constituent laws of junctions it 
can be obtained that  

15 1( ) ( )HE s E sµ= ,                                                          (16)                                                                                                                       
Where, Hµ  is the high feed-forward gain. Constitutive law 
at junction ‘1’, corresponding to the controller is given by: 

1 19 20 21( ) ( ) ( ) ( )e t e t e t e t= + + . 
Taking Laplace transform on both sides, we get 

2
1

1

( )( )
( )

( )
c c cM s R s KE s

C s
F s s

+ +
= = .                               (17) 

Where, Mc, Rc and Kc are respectively the inertia (differen-
tial gain), resistance (proportional gain) and stiffness 
(integral gain) of the controller. Substituting E1(s) from 
Equation (17) into Equation (16), we obtain 

15 1( ) ( ) ( )HE s F s C sµ= .                                                   (18) 
Next 1( )F s  can be determined by writing the constituent 
law at junction ‘0’ (one which is supplying flow input to 
controller): 

1 2 3 22( ) ( ) ( ) ( ) 0f t f t f t f t− + + = , 

[ ]1 3 22( ) ( ) ( )f t f t f t= − + .                                                (19) 
Transfer function is evaluated without considering the ref-
erence trajectory. Applying constitutive laws at various 
junctions, we obtain 
 3 17( ) ( ) ( )bf t f t f tα α= = ,                                               (20) 

Where, ( )bf t  is the body velocity or flow variable asso-
ciated with the body mass point and α is body compensa-
tion gain (flow feedback gain) 

22 8 14 17( ) ( ) ( ) ( ) ( ) ( )t bf t f t f t f t f t f t= = − = − .                (21) 

Now substituting 3 ( )f t and 22 ( )f t respectively from Eq. 
(20) and Eq. (21) into Eq. (19) 

[ ] [ ]1 3 22 17 14 17( ) ( ) ( ) ( ) ( ) ( )f t f t f t f t f t f tα= − + = − + − , 

[ ]1 17 14( ) (1 ) ( ) ( )f t f t f tα= − − .                                        (22) 
Taking Laplace transform on both sides of Eq. (22), we get 

[ ]1 17 14( ) (1 ) ( ) ( )F s F s F sα= − − .                                      (23) 
Substituting 1( )F s  from Eq. (23) into Eq. (18) 

[ ]15 17 14( ) ( ) (1 ) ( ) ( )HE s C s F s F sµ α= − − .                        (24) 

Now, 17 ( )F s  can be expressed through the transfer func-
tion of the robot body ( )bP s  as 

17 17( ) ( ) ( )bF s P s E s= .                                                      (25) 
Applying constitutive law at Junction ‘0’ (correspondding 
to motor torque Fm) and at Junction ‘1’ (corresponding to 
robot toe), we obtain  

17 15 12 14( ) ( ) ( ) ( )E s E s E s E s= − = − .                                (26) 
Substituting E17(s) from Eq. (26) in Eq. (25), we get 

[ ]17 12 14( ) ( ) ( ) ( )bF s P s E s E s= − .                                      (27) 
Combining Eq. (13), Eq. (15), Eq. (24) and Eq. (27), we 
obtain 

[ ]14
12 17 14

( )
( ) ( ) (1 ) ( ) ( )

( ) H
t

F s
E s C s F s F s

P s
µ α= − − − , 

14
12

( )
( ) ( )

( ) H
t

F s
E s C s

P s
µ= −  

14
12 14

( )
( )(1 ) ( ) ( )

( )b
t

F s
P s E s F s

P s
α

⎡ ⎤⎡ ⎤
− − −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
.                       (28) 

Simplifying the above equation we get, 
[ ]12 ( ) 1 ( )(1 ) ( )H bE s C s P sµ α+ −  

14
( )1( ) ( ) ( )(1 )

( ) ( )
b

H H
t t

P s
F s C s C s

P s P s
µ µ α

⎡ ⎤⎡ ⎤
= + + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
. 

As since Admittance at the interaction port between hop-
ping robot toe and ground is defined as, 

14

12

( ) ( )1( )
( ) ( ) ( )

t
rob

rob env

F s F s
Y s

Z s E s E s
= = =  

Admittance or impedance at the interaction port is 
represented as 

[ ]
[ ]

( ) 1 ( )(1 ) ( )
( )

1 ( ) ( ) ( )(1 ) ( )
t H b

rob
H t H b

P s C s P s
Y s

C s P s C s P s
µ α

µ µ α
+ −

=
+ + −

.       (29) 

Eq. (29) indicates two distinct behavior of the system. 
1. When α = 1, and µH >>1, Yrob(s) =1/Zrob(s) = 

1/( µH C(s)), i.e., toe trajectory is not disturbed by 
either toe or body inertia so toe can follow the 
commanded trajectory. 

2. When α < 1, modulation of the impedance to ac-
commodate the interaction forces is possible. 

The heuristic expression for modulation of α is given by, 

lim1 ( ( ), )swi F t Fα = −  

lim lim( ( ) ) ( ( ) )ini GP GIK K F t F K F t F dt⎡ ⎤+ − + −⎣ ⎦∫              (30) 

where F(t) is the actual contact force obtained from force 
sensor; Flim is the limiting value of the force specified, Kini 
is a constant (a bias), KGP is a proportional gain term, and 
KGI is an integral gain term. Eq. (30) represents a propor-
tional-integral control. The swi defines a function such 
as ( , ) 1swi a b = , for a ≥ b, and ( , ) 0swi a b = , for a < b, 
where a, b are variable. 

The bond graph implementation of the impedance 
controller with the hopping robot system is shown in Fig. 6. 
Simulation is carried out using SYMBOLS Shakti soft-
ware. The reference trajectory to be followed by robot toe 
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is taken as a half rectified sine trajectory of amplitude 2A, 
and is given by Eq. (31) as 

2 *sin(2 )* [sin(2 ),0]y A t swi tπ π π π= + + .                   (31) 
  
Then the reference velocity command for the toe, is given 
by, 

4 cos(2 )* [sin(2 ),0]y A t swi tπ π π π π= + +& ,                 (32) 

At the start of simulation the tip trajectory is initialized to 
reference trajectory to reduce the initial errors. The para-
meters values used in simulation are given in Table 2 and 
Table 3.  

The simulation results thus obtained are shown in Fig. 7 
and Fig. 8. Fig. 7(a) shows that the force is controlled in 
the encircled region. Though at the instant of first impact 
the interaction force generated is of very large value, it is 
controlled to the specified value of limiting force (FLim) 
equal to 30N subsequently. The reason for the large value 

of interaction force between the robot toe and the ground 
i.e. ground impact force (GIF) is the high value of toe ve-
locity at the moment of impact. It can be noted that force is 
not generated from third cycle onwards due to precise tra-
jectory tracking by the robot toe. In fig. 7(b) it is evident 
that the robot toe follows the reference trajectory very 
closely. It is interesting to note that the hopping robot is 
hopping to a constant height continuously for several 
cycles. Fig. 8(a) shows that the body experiences consi-
derable displacement in the vertical direction due to the 
interaction forces generated. This behavior is observed 
because the hopping robot system is an under-actuated 
system with two degrees of freedom and only one actuator 
is used to control the leg. The present modeling does not 
consider the limits on the body motion. If limiters are de-
signed and modeled then this movement is expected to be 
within limit value. Fig. 8(b) presents the variation of body 
compensation gain (α) with respect to time. It varies in 

 

(a) 

 

(b) 

Fig. 7(a) Ground Impact Force (b) Toe vertical dis-
placement 

Table 3: Controller parameters 
Parameters Symbol Value 
Effort amplifier gain µH 4 
Controller Proportional gain rc 10 
Controller Derivative gain mc 1 
Controller Integral gain Kc 500 
Limiting Force  Flim 30 N 
Gain (Initial Biasing)  Kini 0.00 
Proportional Gain KGP 0.001 
Integral Gain KGI 0.001 

 

(a) 

 

(b) 

Fig. 8(a) Body vertical displacement (b) Body com-
pensation gain (α) 
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order to accommodate the interaction forces generated 
between the robot toe and ground as shown in Fig. 7(a). 

5 Conclusions 

In this paper, impedance control strategy has been used for 
controlling the impact forces generated during landing 
phase of the hopping cycle for a one-legged robot. Using 
this strategy the forces generated during landing has been 
limited to a constant value specified to the impedance con-
troller. This model and corresponding analysis can be fur-
ther extended for developing hopping robot response for 
forward running at different velocities. 
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