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Nomenclature (excluding standard bond graph elements) 
 
M       mass 
J         rotary moment of inertia  
K       stiffness 
R        resistance (electrical or damping),  
mh      mass of hoist load  
r         radius of pulley 
µ      gyrator modulus corr. to motor 
τ       torque 
i        current 
f         flow 
e        effort 

ω      circular frequency of voltage source 
A       amplitude of voltage source 
g        acceleration due to gravity (9.81m/s2) 
a        distance of front wheel centre from C.G 
b        distance of rear wheel centre from C.G. 
c        distance between pulley centre and  
          rear wheel centre 
De     detector of effort 
Df     detector of flow 
Rd      residual 
 

Subscript 
t     truck 
f     front wheel 
r     rear wheel 
h    hoist 
m   measured variable 
p    pulley 
a    armature of motor 
 

 
 

Abstract 

A simulation model for a hoisting mechanism mounted 
on a vehicle with planer oscillation with two degrees of 
freedom is presented in this paper and that model is vir-
tually instrumented for the purpose of fault diagnosis 
and condition monitoring. The developed model is of 
multi energy complexity and intended to isolate the 
components responsible for abnormal behavior of the 
system using structural analysis of some constraint rela-
tions, called Analytical Redundancy Relations (ARR), 
the numerical evaluation of which are residuals. Bond 
graph modelling, which is a unified tool for multi-
energy domain system representation, is used to model 
the system. Moreover, the fault indicators are derived 
from the bond graph model and fault signatures are ob-
tained by direct exploitation of causal path information 
from the bond graph model. Thereafter, the model simu-
lation with fault is carried out in MATLAB-Simulink 
environment and results are presented. 

Keywords: Bond graphs, Fault diagnosis, Analytical 
redundancy, Residual, Signature matrix, Block diagram, 
Simulation. 

1 Introduction  

In supervision platform of safety-critical systems differ-
ent approaches for condition monitoring and Fault De-
tection and Isolation (FDI) procedures have been devel-
oped: quantitative model-based, qualitative model-based 
and process history based approaches [1]. The present 
study is focused on a particular branch, i.e the quantita-
tive model-based approach using Analytical Redundan-
cy Relation (ARR) for FDI, which consequently enables 
better fault accommodation through an appropriate deci-
sion support system. Generally, model-based methods 
provide superior diagnostic performance while requiring 
the development of mathematical model to describe the 
behavior of the physical system for various operating 
conditions.  
 Therefore, modeling is an important and difficult 
step because of the complexities of the modern industri-
al systems and their control equipment. Bond graph 
modeling [2-3], which is a unified multi-energy domain 
modeling method, is especially suitable for developing 
analytical models of most engineering systems. Bond 
graph modeling has also been used in the past for differ-
ent Fault Detection and Isolation approaches [4]. More-
over, the structural control properties (controllability, 
observability, etc.), which can be deduced by analyzing 
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the causalities (cause and effect relationships) on a bond 
graph model [5], have been already used to optimize 
sensor placements [6] and to determine hardware redun-
dancies. 
 FDI procedures are generally comprised of four 
stages: alarm or fault detection, isolation of fault, esti-
mation of faulty parameter, and operational change [1]. 
In the alarm stage, the system behavior is continuously 
monitored for the occurrence of process faults. Once a 
failure is declared, the isolation phase attempts to identi-
fy the failed system component. The estimation stage 
determines the extent of failure to enable the implemen-
tation of operational changes needed for fault accommo-
dation. In this work, we focus only on the first two stag-
es of FDI paradigm.  
 Isolation of the faulty component can be done based 
on the structural properties of the ARR [7]. It is better to 
write the ARRs in differential form to solve the initial 
condition decoupling problem, i.e., avoiding any inte-
gration [4]. Off course, there are pitfalls in this due to 
sensor noises, whose derivatives cause diagnosis prob-
lems and need specific filters. 
 In the present study, the methodology given in [4] is 
followed for deriving ARRs of the plant and also for 
monitorability and isolability analysis of the possible 
faults. The system behavior of a vehicle mounted hoist-
ing mechanism, virtually instrumented with seven sen-
sors, is investigated through simulation of bond graph 
model and simulation results of FDI analysis are pre-
sented. Three assumptions made for the analysis are: 1. 
at a time, a single independent parameter of the system 
may be faulty (single-fault-hypothesis), 2. sensors are 
considered non-faulty, 3. measurement and process 
noise and parameter uncertainties are not taken into ac-
count. 

2  Generation of Fault Indicators  

An ARR is a relationship between a set of known 
process variables. In a bond graph based approach, the 
known variables are the sources (Se and Sf), the mod-
ulated sources (MSe and MSf), the measurements from 
sensors (De and Df ), the model parameters (θ ), and the 
controller outputs (u). A fault indicator or residual, r, 
which represents the error in the constraint, is formed 
from each ARR and can be written as r = f (De, Df, Se, 
Sf, MSe, MSf, u,θ) = f (K) = 0, where f is the constraining 
function. For a system with n structurally independent 
residuals; ri=fi (Ki), where i=1…n and Ki is the set of 
known variables in the argument of function fi; the fol-
lowing property is satisfied : Ki ≠Kj ∀i ≠ j , where i, j = 
1...n. Although the residuals are theoretically equal to 
zero, they are never so in an online application involving 
measurements from real sensors due to the sensor noises 
and the uncertainties associated with the parameters. 
 The evaluation of the ARR using the actual sensor 
data and the process parameters is used to detect the 
faults in the process. This leads to the formulation of a 
binary coherence vector C=[c1,c2,...,cn], whose elements, 
ci (i=1...n), are determined from a decision procedure, Θ, 
which generates the alarm conditions. Robust decision 

procedures minimize misdetection and false alarms by 
treating the residual noises. 

In this paper, we use a decision procedure, C = 
Θ(Rd1, Rd2,.. Rdn), whereby each residual, Rdi, is tested 
against a threshold, iδ± , to generate the coherence vec-
tor, C. The elements of C, ci (i=1...n), are determined 
from 
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where, subscript k stands for kth sample, ( )ktψ  and ( )ktφ  
are time varying coefficients modifying the mean and 
the variance, respectively; uk is the input, kt  is the time, 
and z  is a coefficient related to the confidence level. 

The coherence vector is calculated at every sam-
pling interval. A fault is detected, when ]0,,0,0[ K≠C , 
i.e. at least one element of the coherence vector is non-
zero (alternatively, at least one residual exceeded its 
threshold). The isolation of the faulty component is done 
using the binary Fault Signature Matrix (FSM), S. The 
fault signature matrix describes the participation of vari-
ous components (physical devices, sensors, actuators and 
controllers) in each residual. Thus, matrix S forms a 
structure that links the discrepancies in components to 
changes in the residuals. The elements of matrix S are 
determined from the following analysis: 
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 It is important to note that the component’s faults 
need not be explicitly modeled in the residuals. Faults in 
any physical component can be mapped to the undesira-
ble changes in the values of the parameters of the com-
ponent. A residual is sensitive to faults in a component, 
when the parameters or the measurements belonging to 
that component appear in the symbolic residual, or are 
causally linked in the numerical form of the residual. 
The elements of the fault signature matrix can as well be 
constructed through experimentation by introducing 
various faults, one at a time. 

3  Case Study: A Hoisting Mechan-
ism  

3.1 System modeling  

A schematic of simplified hoisting mechanism 
mounted on a truck having planer oscillation with 
pitch and bounce motion is shown in Fig. (1) and the 
bond graph model for the system is given in Fig. (2). 
Junction θ&1  and y&1 represent the pitch and bounce 
velocity, to which are attached the inertia terms, Jt 
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and Mt, respectively. The current-torque relation for 
the motor is idealized as: ai.µτ =  
 Seven number of sensors have been with the 
system: Df( mfθ ), Df(fym), Df(fpm), Df(fhm), De(efm), 
De(erm), and De(ehm). The model in Fig. (2) is simu-
lated with the parameter values given in Table 1 
having no initial fault in the system and thereafter at 
time 10 s motor fault is introduced by changing µ  
from the nominal value 1 to 0.8 N.m/Amp, i.e 20% 
deviation is realized. The variation of all sensor data 
with time are plotted in Fig. (3), (4) and (5), from 
which one can conclude that something has hap-
pened at time 10 s but the particular faulty compo-
nent cannot be isolated by online inspection al-
though the information is contained in those signals.
  

Table-1: Nominal values of model parameters of 
hoisting mechanism 

Symbol Value Symbol Value 
Mt 10,000 kg Ra 1 Ω 
Jt 500 kg.m2 µ  1N.m.Amp-1 
Jp 1 kg.m2 ω  10 rad.s-1

mh 100 kg A 1 V 
Kf, Kr 1×105 Nm-1 a 1 m 
Rf, Rr 0.3 N.s.m-1 b 1.7 m 
Kh 1×103 Nm-1 c 0.3 m 
Rh 0.1 N.s.m-1 r 0.2 m 

 

 

Fig.1: Schematics of a vehicle mounted hoisting system 

 

 

Fig.2: Bond graph model of the system in Fig.(1) in 
integrated causality 

 

Fig. 3: Force variation with time in rear wheel (erm) and 
hoisting rope (ehm) 

 

Fig. 4: Time response of efm, fhm and fpm 
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Fig. 5: Time response of fym and fθm 

3.2 Fault detection and isolation (FDI) 

For FDI analysis inverse dynamics is to be studied, i.e 
one has to go to the past based on the present data ex-
ploitation unlike that of model simulation, where the 
present state is evolved on the basis of past history of a 
system. Hence the derivative causality is assigned to the 
bond graph model (Fig. (6)). The ARR (in differential 
form) from a bond graph model can be derived using a 
well established algorithm given by Ould Bouamama 
and his co-workers [4]. In that algorithm, to derive the 
ARR all the storage elements are to be brought under 
preferred differential causality and negative of measured 
quantities from detectors are imposed on the system (i.e. 
on 1 or 0 junction of the bond graph) as pseudo source 
and reactive factor in the bond corresponding to the 
pseudo source is ARR when expressed in symbolic form. 
The number of ARRs thus derived is equal to the number 
of sensors installed in the plant.  Seven numbers of 
ARRs, given in Eq. (4), are obtained as the same num-
bers of sensors are installed in the system. The structural 
observability condition is satisfied from causal path 
analysis of the bond graph model [5]. The FSM obtained 
from the above ARRs is given in Table 2. Note that the 
ARRs and FSM can be derived by model builder soft-
ware using bond graph tools [8]. All the component 
faults listed in the matrix are isolable except the motor 
fault. Motor fault may result if the armature resistance 
(Ra) or the gyrator modulus µ  changes, resulting iden-
tical signature C = [0 0 0 0 1 0 1]. We can define a fault 
subspace Sp in FSM (Table 2) corresponding to this sig-
nature where higher level fault isolation technique need 
to apply. In this work, this aspect is not addressed; how-
ever one can generally recognize a motor fault when this 
signature would result. 
 

Fig. 6: Bond graph model of the system in Fig.(1) in 
derivative causality 
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Table 2: Fault signature matrix (FSM) 

 Rd1 Rd2 Rd3 Rd4 Rd5 Rd6 Rd7 Ib  
Kf 0 0 0 1 0 0 0 1  
Rf 0 0 0 0 1 1 0 1 
Kr 0 0 1 0 0 0 0 1  
Rr 0 0 0 0 1 1 0 1  
Kh 0 1 0 0 0 0 0 1  
Rh 1 0 0 0 1 1 1 1  
mh 1 0 0 0 0 0 0 1  
Jp 0 0 0 0 0 0 1 1  
Ra 0 0 0 0 1 0 1 0  
µ 0 0 0 0 1 0 1 0 

Sp 
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3.3 Validation through simulation 

To study the inverse dynamics we have converted both 
the integrally (see Fig. (2)) and differentially causalled 
(see Fig. (6)) bond graph model to block diagram in 
MATLAB Simulink to study the process behaviour and 
residual responses with the implementation of FDI 
schemes, as the bond graphs do not support simulation 
of differentially causalled model directly.  
 

 
Fig. 7: Coupling of behavioral and diagnostic model to 
derive fault indicators (residuals) 
 

The former block model may be called as beha-
vioural model or plant and the later may be called as 
diagnostic model is simulated with the nominal parame-
ter values given in Table 1. The sensor outputs from the 
behavioural model are becoming the inputs for the diag-
nostic model and the outputs from the diagnostic model 
are residuals. Both the models (behavioural and diagnos-
tic) are squeezed to subsystems and coupled together as 
shown in Fig. (7). Motor fault is introduced once reduc-
ing µ by 20% and then increasing Ra by 20% both at 
time 10 s in separate simulation and the residuals re-
sponse are shown in Fig. (8) and Fig. (9), respectively. 
 

 

Fig. 8: Time response of residuals with motor fault in-
troduced by changing µ  at 10 s. 
 

 
Fig. 9: Time response of residuals with motor fault in-
troduced by changing Ra at 10 s. 
 

A bilateral constant threshold, 12±=ε  is chosen to 
envelop all the normalized nominal residuals. The resi-
duals Rd5 and Rd7 are being abnormal at 10 s (see Fig. 
(8) and Fig. (9)) resulting the coherence vector C = [0 0 
0 0 1 0 1], which is matching the signature of the com-
ponent parameters Ra and µ , thus validating the fault 
occurrence and isolating the subspace Sp. Further analy-
sis such as pattern matching of the residuals responses 
are required to isolate the particular faulty component 
within the subspace, not addresses in this work. Fig. (10) 
shows the residuals (normalized) responses for a simu-
lated hoist rope fault (Kh is reduced by 20% of nominal 
value) at a time of 10 s. The residual Rd2 is crossing the 
threshold after the fault which matches the signature of 
Kh in Table 2, which agrees with the fault hypothesis. 

 
Fig. 10: Time response of residuals with hoisting rope 

fault introduced by changing Kh at 10 s. 

5 Conclusions 

Model based FDI of hoisting mechanism are discussed 
in this article. The information gathered in this problem 
is that ARRs and FSM for a system containing in differ-
ent energy domains can be algorithmically derived from 
a bond graph model and those can be effectively used 
for condition monitoring and fault isolation.  
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Although residuals are normalized to account for 
the uncertainty of parameters, but there is a scope of 
enhancing robustness of FDI by appropriate design of 
adaptive threshold instead of constant bilateral threshold 
as applied in this work. Work can also be extended to-
ward multi fault analysis, where more than one fault 
may be faulty at a time (may or may not be simultane-
ous) and different types of fault (abrupt, progressive or 
incipient) may be associated with different components. 
The parameter can be estimated quantitatively in nomin-
al and faulty state and those quantitative analyses are 
required for fault accommodation either through system 
reconfiguration or through fault tolerant control. 
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