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Abstract 

The effect of  bimodularity on free vibration of all edges 
simply supported, two-layered, cross-ply thick plates are 
invistigated  by using Berti’s constitutive material 
model. An effecttive layerwise laminate theory  has been 
used to analyze the free vibration behavoir by  anlytical 
approach. The free vibration fundamental frequencies 
for various bimodularity ratios, aspect ratios and side to 
thickness ratios are presented. The through thickness 
fiber direction strain , in-plane stresses and trnsverse 
shear stresses distribution for a typical case is shown.   

Keywords: Bimodular, Bert’s model, Effective layer 
wise theory. 

1 Introduction 

Bimodularity is the different behavior of material in 
tension and compression as shown in Fig. (1). Apart 
from certain fiber reinforced composites, bone and some 
biological tissues too exhibit bimodularity.  The static 
analysis of bimodular plates is carried out by Cho et al 
[1,2]. The free vibration analysis of either plate or panel 
is carried out either by using first order shear deforma-
tion theory or using third order theory by a few re-
searchers [3-6]. The forced response analysis of bimodu-
lar  panel is carried out by present authors [7-10].  

 In this paper an efficient individual layer wise 
theory and Bert’s constitutive model is used to study the 
effect of bimodularity, aspect and thickness ratios on the 
free vibration characteristics of bimodular laminated all 
edges simply supported cross-ply plates by analytical 
method. 

 

 

 

 

2  Formulation 

A cross-ply composite plate is considered with the co-
ordinates x, y along the in-plane directions and z along 
the thickness direction with the dimensions a, b, h along 
x, y and z directions, respectively, as shown in Fig. (2). 
The in-plane and transverse displacements for kth layer 
are assumed as:                        
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Here u0, v0, w0 are the displacements of mid-surface ( z 
=0) and θx,θy are the rotations of normal to the mid-
plane about the y and x axes, respectively. In this model, 
there are 8Ne+4 
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ie
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ie  constants 

which need to be determined where Ne is number of ef-
fective layers. If n is number of layers which have partly 
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Fig. 1: Stress-strain behavior of bimodulus material. 
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tensile properties and partly compressive properties and 
N is total number of layers, then Ne=N+n. To determine 
the unknown constants, the following conditions are 
satisfied   
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The boundary conditions considered are: 
        v0 = w0 = θy = 0 at x = 0, a. 
        u0 = w0 =θx = 0 at y = 0, b.                         (2) 
 

The solution satisfying the boundary condition [Eq. (2)] 
is taken as: 
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For fundamental mode of vibration P = Q =1 is suffi-
cient to get the accurate results. 

Based on fiber direction strain governed model, the 
constitutive relation of kth layer of a bimodulus lami-
nated cross-ply plate can be written as:                
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where k
lijQ  are transformed stiffness coefficient and 

k is layer number, l = 1 denotes the properties associated 
with fiber direction tension and  l = 2 denotes the prop-
erties associated with fiber direction compression, 
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The strain vector can be written as: 
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The strain energy of the plate is given by: 
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Using Eqs. (4), (5) and (6), Eq. (8) can be rewritten as:       
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Fig. 2: Geometry of a rectangular laminated plate.
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Using  Eqs. (1) and (3), { }k

pε and { }k
sε can be written 
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[Z4] and [Z5] are null matrices. 
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The kinetic energy of plate is: 
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 Using Eq. (13), Eq. (12) can be rewritten as: 
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Using above potential and kinetic energy expressions in 
Lagrange’s equation of motion, the governing equation 
is obtained as: 
                      [ ]{ } [ ]{ } { }0=+ δKδM &&                        (15)                            

Assuming the solution { } { } tIe ωδδ =  ( )1−=I  for free 
vibration analysis, the Equation (4) can be rewritten as: 
          [ ]{ } [ ]{ } { }02 =+− δKδMω                            (16)                            
The free vibration frequencies are extracted using itera-
tive eigenvalue approach from Eq. (16). 

3  Results and Discussions 

The material properties considered are: 

 In tension: E1t/ E2t = 25, E2t = E3t, E3t =E2t, G12t / E2t = 
G13t/ E2t = 0.5, G23t / E2t = 0.2, ν12t = ν23t = ν13t = 0.25. 

In compression: E1c /E2c = 25, E2c = E3c = 1 GPa, G12c / 
E2c = G13c / E2c = 0.5, G23c / E2c = 0.2, 

 ν12c = ν23c = ν13c = 0.25. E2t/E2c is varied from 0.2 to 2.  

  The through thickness non-dimensional transverse 
shear stress (Syz, Sxz) distribution for a two-layered cross-
ply bimodular plate (b/h=10, a/b=1) for sinusoidally 
distributed transverse load are compared with the Ref. 
[2] and presented in Fig. (3), which shows very good 
agreement with the present results. 

 The fiber direction strain [ε11(a/2, b/2, z)] distribu-
tion of two-layered cross-ply plate (a/b=0.5, b/h=5) for 
positive and negative half cycle is shown in Fig. (4) for 
E2t/E2c=0.2 and E2t/E2c =2.0. The strain distribution for 
positive and negative half cycle is completely different 
and also, the negative half cycle strain distribution is not 
achievable by just multiplying the positive half cycle by 
-1, which is the indication of different stiffness matrix 
for positive and negative half cycle and hence different 
frequencies for positive (ω1) and negative (ω2) half 
cycles. 

The through thickness in-plane normal [Sxx (a/2, b/2, 
z), Syy (a/2, b/2, z)] stresses distribution for positive and 
negative half cycles are shown in Figs. (5) and (6) for 
different bimodularity ratios. The distribution patterns 
are non-linear and due to bimodularity the stress are 
discontinuous in a lamina (where the lamina is partly 
under tension and partly under compression along fiber 
direction) unlike unimodular case where the in-plane 
stresses are continuous in a lamina. 

 The in-plane shear stress [Sxy (0, 0, z)] distribution 
for positive and negative half cycles is shown in Fig. 
(7).The distribution pattern is nonlinear and discontinui-
ty in a lamina is observed. 

 

 

 

 

 

 
. 
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The transverse shear stress [Syz (a/2, 0, z), Sxz (0, b/2, 
z)] distribution is shown in Fig. (8) for positive and neg-
ative half cycles for different bimodularity ratios. The 
stress distribution is nonlinear and stress vanishes at the 
top and bottom of the laminate. Here also the negative 
half cycle stress can not be obtained by just multiplying 
the positive half cycle stress by -1. As the bimodularity 
increases the stresses increase. 

 
The fundamental non-dimensional positive and neg-

ative half cycle frequencies [Ω1, Ω2 = (ω1, ω2) b2 

(ρ/E2c/h2)1/2] versus bimodularity ratios (E2t/E2c) is plot-
ted in Fig. (9) for different aspect- and thickness  ratios 
of bimodular plate. The difference of positive and nega-
tive half cycle frequencies is greater for a/b=0.5 com-
pared to a/b=2. The positive and negative half cycle 
frequencies are same for square plate irrespective of 
bimodularity ratios. These Figs also indicate that the 
plate is thinner the difference is less. As the bimodulari-
ty increases the frequency parameters increases 
 

0.05 0.1 0.15 0.2 0.25 0.3 0.35-0.5

-0.25

0

0.25

0.5

z /h

Sy z

Present
Ref.[2]

(a) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35-0.5

-0.25

0

0.25

0.5

z /h

Sx z

Present
Ref. [2]

(b) 

Fig. 3: Comparison of through thickness transverse
shear stresses distribution for two-layered cross-ply bi-
modular laminate: (a) Syz (a/2, 0, z), (b) Sxz (0, b/2, z). 
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Conclusions 

From the above discussions the following conclu-
sions can be drawn. 
1)  The positive and negative half cycle frequencies 

are different for rectangular plate for E2t/E2c ≠1 
and are same for E2t/E2c=1. For square plate 
positive and negative half cycle frequencies are 
same. 

2)  The through thickness stresses distribution for 
negative cycle can not be obtained by multiply-
ing the positive cycle distribution by -1 and 
vice- versa. 

3)  There will be discontinuity of in-plane stress in 
a lamina if the lamina has partly tensile strain 
and partly compressive strain along the fiber di-
rection. 

4)  The transverse shear stresses are continuous and 
vanish at the top and bottom of the laminate 
like the 3D elastic solution. 
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Fig. 4: Fiber direction strain (ε11) distribution of bimo-
dular plate (a/b=0.5, b/h=5, 0º/90º): (a) Positive half 
cycle, (b) Negative half cycle. 
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Fig. 5: Through thickness normal stress (Sxx) distribution
of bimodular laminate (a/b=0.5, b/h=5, 0º/90º): (a) Posi-
tive half cycle, (b) Negative half cycle. 
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Fig. 7: Through thickness in-plane shear stress (Sxy)
distribution of bimodular laminate (a/b=0.5, b/h=5,
0º/90º): (a) Positive half cycle, (b) Negative half cycle. 
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Fig. 6: Through thickness normal stress (Syy )distribu-
tion for bimodular laminate (a/b=0.5, b/h=5, 0º/90º):
(a) Positive half cycle,  (b) Negative half cycle. 
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Fig. 8: Through thickness transverse shear stress dis-
tribution for bimodular laminate (a/b=0.5, b/h=5,
0º/90º): (a) Sxz, (b) Syz. 
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Fig. 9: Variation of non-dimensionalized positive
and negative half cycle frequencies for two layered
cross-ply (0º/90º) plates: (a) b/h=5, (b) b/h=10. 
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