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Abstract                                                                   
This paper contains an attempt to evaluate dynamic be-
haviors of beam structures with transverse crack sub-
jected to external force. In this work theoretical expres-
sions have developed for finding out the mode shapes 
and natural frequencies for beam with transverse crack 
using flexibility influence coefficients and local stiffness 
matrix. Crack depth and crack position are taken as main 
variable parameters. Suitable numerical models are con-
sidered, and the results are presented graphically. Fur-
ther experimental and finite element analysis verifica-
tions are also done   to prove the authenticity of the 
theory developed. The work leads to the conclusion that, 
the presence of crack in structure makes an appreciable 
difference in dynamic response. 
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                 Nomenclature                                
1a =depth of crack, mm                                     

A =cross-sectional area of the beam , 2mm           

iA ,i=1 to 12=co-efficients of matrix A            

B =width of the beam, mm                                       

ijC = flexibility influence co-efficient           

E =young’s modulus of beam material, 2
N

mm  

iF ,i=1,2=experimentally determined function  

J =strain-energy release rate                   

IiK ,i=1,2=stress intensity factors for iP  loads 

ijK =local flexibility matrix elements                

L =length of the beam, mm                             

1L =location of the crack from fixed end , mm  

iP ,i=1,2=axial force(i=1),bending moment(i=2) 

Q =stiffness matrix for free vibration     

iu ,i=1,2=normal functions longitudinal 

iy ,i=1,2=normal functions transverse              

W =depth of the beam, mm                              
ω =natural circular frequency, rad

s                  

β =relative crack location( 1L
L )                          

Aµ ρ= , kg
mm                                                    

ρ =mass density of beam, 3
kg

mm                     

1ξ =relative crack depth ( 1a
W ) 

1 Introduction 
The development of high speed machineries and light 
weight rising structures, fault diagnosis using the beha-
viors of different components of the system has gained 
paramount importance. It has also been realized that the 
presence of crack in structures or in machine member 
leads to operational problems as well as premature fail-
ure. Major characteristics of the structure which undergo 
change due to presence of crack are the natural frequen-
cy, the amplitude response due to vibration and mode 
shape. Scientific study on the changes in these characte-
ristics can be widely utilized for the identification of 
crack in structures. 
   
 In this investigation, the presence of transverse crack in 
the structure has been considered. This crack introduces 
new boundary conditions for the structure at the crack 
location. These boundary conditions are derived from 
the strain energy equation using Castigliano’s theorem. 
Presence of crack also reduces the stiffness of the struc-
ture which has been derived from the stiffness matrix. 
For dynamic behaviors of beam with a transverse crack, 
Timoshenko beam theory with modified boundary con-
ditions have been used to find out the theoretical expres-
sions for the natural frequencies and the modes for the 
beam. For all the theoretical expressions as derived for 
dynamic characteristics of structure with a crack, respec-
tive numerical analysis was taken up with suitable nu-
merical models with the help of the computer. 
 
In order to establish the authenticity of theories devel-
oped, experiments, finite element analysis have been 
conducted in varied specimens in line with the numeri-
cal models adopted in different sections. Experimental, 
finite elements and analytical results have been com-
pared and are showing good agreement. From the 
present investigations, the following generalized results 
are achieved as expected. Presence of crack in structure 
makes an appreciable difference in dynamic response. 
These findings can be utilized in various industrial ap-
plications, particularly for fault detection on structures 
using condition monitoring technique. 
 



14th National Conference on Machines and Mechanisms (NaCoMM09), 
NIT, Durgapur, India, December 17-18, 2009  NaCoMM-2009-DVAMIP5 

  311

2    Background of the Analysis 
 
A local compliance has been used to quantify, in a 
microscopic way, the relation between the applied load 
and the strain energy concentration around the tip of 
crack by Irwin [1, 2]. This idea has been implemented 
for determining stress intensity factor, describing the 
intensity of the stress field about the tip of the crack. 
This becomes a standard method for calculating the 
stress intensity factors and both analytical and experi-
mental results are tabulated for number of cases, differ-
ent in loading and geometry conditions [3]. A general 
method has been considered by Okamura et al. [4] for 
applying fracture mechanics through the local com-
pliance concept for the analysis of a structure containing 
cracked members. Krawczuk and Ostachowicz [5, 6, 7] 
have analyzed the effect of positions and depths of two 
cracks on the natural frequencies of a cantilever beam. . 
Expressions for bending vibrations of an Euler-Bernoulli 
cracked beam have been analysed by Matvev etal. [8]. 
They have studied the effects of the ratio of crack loca-
tion to the length of the beam and also the ratio of depth 
of the crack to the height of the beam.They have investi-
gated the variation of the natural frequency of the 
cracked beam.Chondros et al. [9] have analysed the lat-
eral vibration of cracked Euler-Bernoulli beams with 
single or double edge cracks. Their analysis can be used 
for the prediction of the dynamic response of a simply 
supported beam with open surface cracks. Qian et al. 
[10] have used a finite element model to analyze the 
effect of crack closure on the transverse vibration of a 
beam. The stiffness matrix of the system has been de-
duced from the stress intensity factors, and it gives two 
values, one for the close crack (uncracked beam) and for 
the other for the open crack. The sign of the stress on the 
crack faces has been used to determine if the crack is 
open or closed at each time step.Fernandez-Saez et al. 
[11] have used the method of flexibility influence func-
tions to approximate the fundamental frequency for 
bending vibrations of cracked Euler Bernoulli beams 
with different boundary conditions. The results obtained 
agree with those numerically obtained by the finite ele-
ment method. A simple method for predicting the loca-
tions and depths of the cracks based on changes in the 
natural frequencies and amplitudes of the frequency re-
sponse functions (FRFs) of the beam has also been pre-
sented and discussed. Maiti [12]. A method to measure a 
change in crack length from the change in the first natu-
ral frequency has been presented. The accuracy of the 
methods is illustrated by case studies involving a short 
cantilever beam with a crack. Both numerical and expe-
rimental case studies are presented to demonstrate the 
effectiveness of the methods. Zheng and Kessissoglou 
[13] have used the overall additional flexibility matrix 
instead of the local additional flexibility matrix to obtain 
the total flexibility matrix of a cracked beam. The stiff-
ness matrix is then obtained from the total flexibility 
matrix and is used for calculating the natural frequencies 
of a cracked beam.Narkis and Elmalah [14] have dem-
onstrated the possibility of crack identification in canti-
lever beams under uncertain end conditions, using natu-

ral frequency variation. They have developed a method 
for characterizing the effect of clamp rigidity on free 
vibrations of the beam, and for direct calculation of 
crack location based on variations of three natural fre-
quencies. The proposed method has been validated both 
numerically and experimentally. Dharamraju et al. [15] 
have developed an algorithm for estimation of beam 
crack parameters. The analysis is based on the finite 
element method. The identification methods rely on the 
measurement of the beam response for a known sinu-
soidal force when the uncracked beam model and the 
crack location are known. The identification algorithm is 
illustrated by a simulated example. Kim and Stubbs [16] 
have presented a methodology to non-destructively lo-
cate and estimate size of crack in structures for which 
only a few natural frequencies are available. The pro-
posed methodology is presented in two parts. The first 
part of the paper has outlined a theory of crack detection 
that yield information on the location and size of crack 
directly from changes in frequencies of the structures. 
The second part of the paper has demonstrated the feasi-
bility and practicality of the crack detection scheme by 
accurately locating and sizing cracks in test beams. 
 

3  Theoretical Analysis 

For theoretical analysis a cantilever beam of width ‘ B ’, 

height ‘W ’ and length ‘ L ’ with a transverse crack of 

depth ‘ 1a ’for full width at a distance ‘ 1L ’ from fixed 

end of the beam is taken. 

3.1 Local Flexibility of a Cracked                                

Beam under Bending and Axial Loading 
The presence of a transverse surface crack on a beam 

introduces a local flexibility, which can be defined in 

matrix form, the dimension of which depends on the 

degrees of freedom .Here a 2x2 matrix is considered .A 

cantilever beam is subjected to axial force 1P  and the 

bending moment 2P  which gives coupling with the lon-

gitudinal and transverse motion. 

 

As per Tada, the strain energy release rate at the frac-

tured section can be written as,  

2
1 2'

1 ( )I IJ K K
E

= +  

2

'

1 1
E E

ν−
=  (for plane strain condition) 
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       =
1
E

         (for plane stress condition)    

Where, 

 1 2,I IK K  are the stress intensity factors of mode I 

(opening of the crack) for load 1P and 2P  respectively. 

The values of stress intensity factors from earlier studies 

are, 

1
1 1( ( ))I

P aK a F
BW W

π=  

2
2 22

6 ( ( ))I
P aK a F

BW W
π=  

Where expressions for 1F  and 2F  are as follows 

0.5
1

2( ) ( tan( ))
2

a W aF
W a W

π
π

=  

30.752 2.02( / 0.37(1 sin( / 2 ) )
cos( / 2 )

a W a W
a W

π
π

⎧ ⎫+ + −
⎨ ⎬
⎩ ⎭

 

0.5

2
2 tan

2
a W aF
W a W

π
π

⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

40.923 0.199(1 sin( / 2 ))
cos( / 2 )

a W
a W

π
π

⎧ ⎫+ −
⎨ ⎬
⎩ ⎭

 

Let tU  be the strain energy due to the crack. Then from 

Castigliano’s theorem, the additional displacement along 

the force iP  is 

 t
i

i

UU
P

∂
=
∂

                                                                  (1) 

The strain energy will have the form 

 
1 1

0 0

a a
t

t
UU da Jda
a

∂
= =

∂∫ ∫                                           (2) 

                          

Where, tUJ
a

∂
=

∂
is the strain energy density function 

from (1) and (2) thus we have  

                            

 
1

0

( )
a

i
i

U J a da
P
⎡ ⎤∂

= ⎢ ⎥
∂ ⎢ ⎥⎣ ⎦

∫                                               (3) 

                        

The flexibility influence co-efficient ijC  will be, by 

definition 

                                      

 
12

0

( )
a

i
ij

j i j

UC J a da
P P P

∂ ∂
= =
∂ ∂ ∂ ∫                               (4)       

                                               
To find out the final flexibility matrix we have to inte-
grate over the breadth ‘ B ’.                                                 
                                           

 
1/ 22

/ 2 0

( )
aB

i
ij

j i j B

UC J a dadz
P P P

+

−

∂ ∂
= =
∂ ∂ ∂ ∫ ∫                   (5) 

                                            
Putting the value of strain energy release rate from 

above equation (5) modifies as, 

 
12

2
1 2'

0

( )
a

ij I I
i j

BC K K da
E P P

∂
= +

∂ ∂ ∫                         (6)                 

                                              

Putting ( / ), daa W d
W

ξ ξ= =  

  
We get da Wdξ=  and when a=0 0ξ = ; 

1a a=  1 1( / )a Wξ ξ= =  

 From the above condition, equation (6) converts to  

  
12

2
1 2'

0

( )ij I I
i j

BWC K K d
E P P

ξ

ξ∂
= +

∂ ∂ ∫                    (7) 

  From the equation (7) calculating C11, C12=(C21) and       

C22 we get  

 
1

2
11 12 2

0

2( ( ))
'

BW aC F d
E B W

ξ π ξ ξ= ∫   

 

        
1

2
1'

0

2 ( ( ))F d
BE

ξπ ξ ξ ξ= ∫                                       (8)               

 
1

12 21 1 2
0

12 ( ) ( )
'

C C F F d
E BW

ξπ ξ ξ ξ ξ= = ∫                (9)                 

  

 
1

22 2 2' 2
0

72 ( ) ( )C F F d
E BW

ξπ ξ ξ ξ ξ= ∫                       (10)                

Converting the influence coefficient into dimensionless 
form 

 
'_

11 11 2
BEC C
π

=                                                         (11) 
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'_ _

12 2112 12
E BWC C C

π
= =                                          (12) 

' 2_

22 22 72
E BWC C

π
=                                                   (13) 

 The local stiffness matrix can be obtained by taking the 

inversion of compliance matrix i.e. 
1

11 12 11 12

21 22 21 22

K K C C
K

K K C C

−
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    

3.2 Governing Equations for Vibration 

Mode of the Cracked Beam                                   

The cantilever beam as mentioned is being considered 

for free vibration analysis. Taking U1(x,t) and U2(x,t) as 

longitudinal vibrations for the sections before and after 

the crack and Y1(x,t),Y2(x,t) are the bending vibrations 

for the same sections, The normal function for the sys-

tem can be defined as; 

 
Fig. 1: Cracked Beam Model. 

1 1 2( ) cos( ) sin( )u uu x A K x A K x= +                  (14a)             

2 3 4( ) cos( ) sin( )u uu x A K x A K x= +                 (14b) 

1 5 6

7 8

( ) cosh( ) sinh( )

cos( ) sin( )
y y

y y

y x A K x A K x

A K x A K x

= +

+ +
           (14c) 

2 9 10

11 12

( ) cosh( ) sinh( )

cos( ) sin( )
y y

y y

y x A K x A K x

A K x A K x

= +

+ +
         (14d) 

              

Where, 1, , , , Lx u y tx u y t
L L L L L

β= = = = =  

2
0.5 0.5 0.5, ( ) , ( ) , ( )u u y y

u y

L E L EIK C K C
C C
ω ω

ρ µ
= = = =

 Aµ ρ=                     
ω  = Natural Circular Frequency 
A  = Shaft Cross-Section 
ρ  = Mass Density of the material 
E  =Young’s Modulus of Elasticity 
 
Ai, i = 1,12 constants are to be determined, these con-
stants will be determined by boundary conditions. 
 

The boundary conditions of the cantilever beam in con-
sideration are: 

1(0) 0u =                                                                   (15) 

1(0) 0y =                                                                   (16) 
'

1 (0) 0y =                                                                  (17) 
'

2 (1) 0u =                                                                   (18) 
''

2 (1) 0y =                                                                  (19) 
'''

2 (1) 0y =                                                                  (20) 
 
 At the Cracked Section: 

1 2( ) ( )u uβ β=                                                          (21) 

1 2( ) ( )y yβ β=                                                         (22) 
'' ''

1 2( ) ( )y yβ β=                                                       (23) 
''' '''

1 2( ) ( )y yβ β=                                                      (24) 
 
Also at cracked section we have 

1 1
11 2 1 1 1

( ) ( ( ) ( ))du LAE K u L u L
dx

= −  

                       2 1 1 1
22

( ) ( )( )dy L dy LK
dx dx

+ −  

Multiplying both sides by 11 12/AE LK K  & simplify-
ing we get, 

'
1 2 1 2 2 1( ) ( ( ) ( ))M M u M u uβ β β= −  

                        ' '
1 2 1( ( ) ( ))M y yβ β+ −                    (25) 

  Similarly, 
2

1 1
21 2 1 1 12

( ) ( ( ) ( ))d y LAI K u L u L
dx

= −  

                        2 1 1 1
22

( ) ( )( )dy L dy LK
dx dx

+ −  

Multiplying both sides by 2
11 12/AI L K K  & simplify-

ing we get, 
''

3 4 1 3 2 1( ) ( ( ) ( ))M M y M u uβ β β= −  

                         ' '
4 2 1( ( ) ( ))M y yβ β+ −                   (26) 

Where, 1 2 3
11 12 22

, ,AE AE EIM M M
LK K LK

= = = and 

 4 2
21

EIM =
L K   

The normal functions, equation (14) and boundary con-
ditions (15) to (26) yield the characteristics equation of 
the system as: 

0Q =                                                                        (27) 

Q  is a 12x12 matrix. 
This determinant is a function of natural circular  
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frequency ω ,the relative location of the crack β  and 
the local stiffness matrix K  which in turn is a function 
of relative crack depth 1( / )a W . 
 
4 Experimental Set-up 
 
An experimental set-up used for performing the experi-
ments is shown in schematic diagram. A number of tests 
are conducted on Steel specimen (800mmx50mmx6mm) 
with a transverse crack for determining the natural fre-
quencies and mode shapes for different crack depths. 
Experimental results of amplitude of transverse vibra-
tion at various locations along the length of the beam are 
recorded by positioning the vibration pick-up and tuning 
the vibration generator at the corresponding resonant 
frequencies.  
 

 
 
Fig. 2:Schematic diagram of experimental set-up. 
 
1. Cracked Cantilever beam          2.Vibration pick-up 
3.Vibration meter             4.Amplifier&Signal Generator 
5.Electro Dynamic Exciter 
 

5 Finite Element Analysis of Beam 

The finite element analysis of cracked and uncracked 
beam had carried out with the help of Ansys [17] pack-
age the cracked beam was model as solid beam and it is 
meshed with help of tetrahedral solid elements. The 
cracked was taken as very fine cut. In the crack zone 
mesh has been properly refined. The convergent test of 
all the results was carried out. 

 

Fig. 3: Cracked Beam meshed with solid elements 

7  Results                                             
All the first natural frequency results obtain in theoreti-
cal, experimental and finite element analysis of cracked 
cantilever beam in hertz for different depth and differ-
ent position of crack from fixed end are given below in 
Table 1 and Table 2.                                                         
Table-1: Analysis results of beam part-I 

                                  

 

Fig. 4: 3D plot of FEM results for cracked beam 

Depth of 
crack(mm) 

Position of the crack along the length 
from the fixed end (mm) 

100 300 

Th 

(Hz) 

 

FEM 

(Hz) 

Exp 

(Hz) 

Th 

(Hz) 

FEM 

(Hz) 

Exp 

(Hz) 

0(without 
crack) 

6.37 6.41 6.38 6.37 6.41 6.38 

2 
6.20 6.26 6.24 6.25 6.30 6.28 

4 
6.06 6.10 6.07 6.15 6.22 6.16 
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Table-2: Analysis results of beam part-II 

Depth of 
crack(mm) 

Position of the crack along the length 
from the fixed end (mm) 

500 700 

Th 

(Hz) 

FEM 

(Hz) 

Exp 

(Hz) 

Th 

(Hz) 

FEM 

(Hz) 

Exp 

(Hz) 

 

0(without 
crack) 

6.37 6.41 6.38 6.37 6.41 6.38 

2 
6.30 6.37 6.31 6.34 6.40 6.36 

4 
6.26 6.34 6.27 6.32 6.39 6.33 

6  Conclusions 

Crack depth and relative crack position have got 
major effects on dynamic behaviors of cantilever 
beam. The natural frequency of a cantilever beam 
with transverse crack decreases with increase of 
crack depth. But the natural frequency shift decreas-
es for same depth of crack as the position of the 
crack changes along the length from fixed end to 
free end of a cantilever beam. 
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