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Abstract 
 
Rotors at speeds higher than certain threshold values 
become unstable due to rotating damping forces gener-
ated by dissipation in rotor material, couplings or due to 
friction in splines and tool tips. There are several tech-
niques by which one may stabilize such rotors. Although 
the current methods in practice are quite effective for 
large or medium size rotors but these may not be suit-
able for small, mini or micro rotor systems. This paper 
proposes a class of alternative techniques to stabilize 
such small size rotors.  
 
This work reveals some interesting facts. For rotors 
without torsional load the shaft drawn power entirely 
goes for only fostering whirling motion. The power may 
be used for modulating contrived negative rotating 
damping to stabilize the rotor. But for rotors having tor-
sional loads, the shaft drawn power would be more than 
needed only to sustain whirling motion and thus may 
cause over reduction of effective rotating damping and 
the shaft would then eventually whirl in reverse direc-
tion with rapidly growing whirl amplitude and would be 
unstable. 

Two alternative approaches of using orbital response 
functions are proposed which are created by measure-
ment of orthogonal vibration velocity amplitude in 
frame rotating with the shaft and the actively contrive 
negative rotating dampers are modulated with suitable 
functions these signals. It has been shown in this paper 
that by such improvisations of modulations the negative 
damping coefficients stabilize the shaft for both with 
added eccentricity and with torsional load or their com-
bination. The stabilizing scheme may be implemented 
with in a suitably designed coupling between the rotor 
and its drive. 

Keywords: Rotating dampers, non-potential forces, 
Bond-graphs, regenerative power (Shaft Drawn Power), 

Threshold spinning speed, SPBF (Shaft Power Bounding 
Function), whirl orbital response functions. 

1 Introduction 
 
Dynamical systems subjected to such displacement de-
pendent forces, not derivable from gradient of potential 
functions may become unstable. Such non-potential 
forces may develop due to dissipative forces rotating 
with the spinning system. The destabilizing effects of 
dissipative forces in cases of topes and pendulums like 
system have been studied by Bou-Rabee, Marsden and 
Romero [1], Kirillov [2], Or [3], Samantaray et al [4]. 
These forces may import energy from the drives or other 
exogenous sources or even kinetic energy of inertial part 
causing instability. Some significant examples of such 
engineering systems are elastic rotors with internal or 
material damping forces or dissipative forces in cou-
plings, hydrodynamic forces due to bearings supporting 
the rotor and elastic structures subjected to aerodynamic 
forces. Several efforts to study dynamics of such sys-
tems and the proposals for their stabilization are re-
ported in literature [5, 6]. These proposals are mainly 
passive in nature such as incorporating additional envi-
ronmental dissipation as in case of rotors with deploying 
squeeze film dampers [7, 8], suspended visco-elastic 
particles in the lubricating mediums[9, 10,11] or incor-
poration of dissipative seethes on aero-elastic structures. 
In case of rotors these stabilizing techniques may be 
deployed on for large or medium size rotors.  
 
This paper is devoted to study on such system i.e. rotors 
with rotating dissipation. Efforts have also been made to 
create efficient controllers to stabilize these rotors and it 
has been also ensured that these controllers are practi-
cally realizable. The technique proposed here may be 
implemented in small, mini or micro size rotors.  
 
A brief discussion on non-potential force field due to 
spinning dissipation is incorporated. For detailed discus-
sion on this aspect reader may see reference [12].  
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After establishing the non-potential nature of rotating 
dampers, bond graph models of pendulum rotors with 
spinning dampers are created. Bond graphs facilitate 
creation of holistic models dynamical system belonging 
to multi-energy domain. Piezo and electromagnetic ac-
tuators have been used in the models as final controlling 
element. The modeling of spinning shaft with embedded 
smart structures in rotating frames incorporated the cou-
pling between drive and rotor is created for several sta-
bilizing strategies. Practical issues like shaft eccentricity 
and loads are also considered in the model. To obtain a 
relatively robust control law the dependence of threshold 
spinning speeds of the shaft beyond which the shafts get 
destabilized is analyzed. It can be theoretically shown 
that the active stabilization of the shaft can be achieved 
by altering the shaft’s stationary damping, rotating or 
material damping or shaft natural frequency by active 
control. Arguments have been presented in sequel in the 
paper in favor of the final choice proposed. It has been 
shown that practical stabilization can be achieved by 
active alteration of rotating damping, which may be real-
ized using the embedded piezo or electromagnetic actua-
tors in the smart coupler. We have also taken special 
efforts to develop a thorough theoretical control strategy 
to ensure an complete stabilization of the rotor. We have 
discussed the effectiveness of the control algorithm by 
showing its path by considering its convergence through 
Bounding Function. Spatial trajectory and regions of the 
bounding function is shown for absolutely no delay, 
small delay and large delay conditions. We have also 
proposed a smart structure coupling embedded within 
the shaft-rotor system to make it practically realizable. 
The entire idea is validated by computer simulation 
whose results are appended within the later sections of 
the paper. Symbols Shakti version 2.0.1[13] Software 
has been used for modeling and simulation. 

2 Analysis of Spinning Systems 
with External and Internal or Mate-
rial Damping  
 
Consider a system with mass and internal damping (iso-
tropic) only 

 
Fig 1: Schematic Representation of Fixed and Rotational 

Dampers. 
 
The aerial damping coefficient is taken as 2aR=α , 
such that effective damping coefficient in all direction 
is aR . Likewise frame is taken as 2iR=µ , such that its 

effective value in all direction is iR . The stiffness is as-
sumed to be 2sK=ξ , such that stiffness sK is experi-
enced in all directions. See ref. [12]. 
 
The rotating damping forces act in the frame rotating 
along with the dampers. The velocity  in the rotating 
frame are related to those in fixed frame in co- oriented 
coordinate as follows ( kji ,, are the unit vectors).  

 rVV rf ×+= ω ,   
      

 )( jikrf yxVV +×+= ω ,                                                 

       = jir xyV ωω −+    (1)                 
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In terms of displacement components 
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The force vector would be, 
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The first term on the right hand side is like ordinary 
damping force where as the second term has special fea-
tures which will be discussed below. This component of 
the force will be called as circulating force due to rea-
sons which will be shown later in the paper. 
 
Let us consider the circulating component of the force 
vector,  
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In vector notations the circulating force, cF , may be 
written as,  

jXRiYRF iic
ˆˆ ωω +−=   (6) 

Where î  and ĵ  are unit vectors in X and Y directions. 
The special features of this force can not be derived 
from a potential function i.e. φ−∇≠CF   for any func-
tion ),( YXφ . 
This may be proved by the fact that it has non-vanishing 
curl, 
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(7) 
With jik ˆˆˆ ×= . 
This has a significant implication as the work done by 
the force CF  will be path dependent. In other words it 
will do net work   when the point of application traces a 
closed orbit. Say the point is moved in a circular orbit 
around its equilibrium point at 0==YX  then work 
done in such on orbit will be  
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rdFW cc .∫=  = .).( adFC∫∫ ×∇   

kdakRi
ˆ.ˆ2∫∫= ω        

= ARiω2     (8)  

Here A is the area of the orbit. 
If the circulating force vector is a nonlinear function of 
position vector ).,( yxfFC ω=  

Then kC AyxfW ).,(×∇= ω   (9) 
And the entire preceding argument will be valid except 
that WC is not proportional to the area but will have 
somewhat complex dependencies. 

In this paper we have considered linear internal damping. 

3 Theoretical Analysis of Strategies 
used for Active Stabilization of a sin-
gle degree of freedom Rotor. 

3.1  Determination of Instability Threshold 
Spinning Speed 

We need to find out the critical spinning speed beyond 
which the system becomes practically unstable. 
 
Regenerative work per orbit as stated ear-
lier ARW iC ω2= , for a circular orbit (the system sym-
metry suggests that this orbit has to be circular). 
 A = 2rπ , where r is the radius of the or-
bit . 22 rRW iC πω= . The dissipative work done due to 
damping ( aR + iR ) would be  

).()()2( iand RRrrW +∗∗= ωπ              (10) 
Now at balanced condition the regenerative power will 
be almost nearing the dissipative power therefore the 
condition dC WW = . We get the same relation that 
is )/1( ianth RR+=ωω . We can denote this threshold 
spinning speed by thω . At speed thωω >  the regenera-
tive energy per orbit or regenerative power will be larger 
than power dissipated by damping ia RR + . The system 
will become unstable and there will be continuous 
growth of the power drawn from the drive as will be 
shown later section by the simulation results. 
 
It has been observed that the critical spinning speed de-
pends on the shaft natural frequency, the external damp-
ing and also rotating damping. Therefore it is possible to 
achieve stability by increasing the value of thω  (refer to 
the relation )/1( ianth RR+=ωω ). 

3.2  Limitations of Stabilizing Control by 
the Shaft Natural Frequency & Shaft Sta-
tionary Damping 

Keeping rotor inertial unchanged one may increase shaft 
stiffness by feeding back shaft displacement. Often this 
way of stabilization would technically be difficult and 
there would be limits up to which the stiffness could be 
increased in flexible rotors with limited number of ac-
tuators.  Therefore it would not be a practical proposi-
tion to handle the shaft natural frequency in order to 
stabilize the shaft.  
 
Increasing the shaft stationary damping aR  is another 
way by which we could shift the shaft critical speed and 
stabilize but there may be certain limitations in this ap-
proach too. By applying velocity proportional force in 
stationary frame on the shaft one may artificially in-
crease aR . This will lead to increase in thω . However, 
depending on the range thωω − , the difference of spin-
ning and the instability onset speed the feedback gains 
will have to be increased. For larger differences of these 
speed larger gain would be needed. This would certainly 
mean a larger actuation problem. In addition to this for 
application of theses forces a rigid stationary structure 
would be needed which may not be practically imple-
mented with the rotating shaft. There would be severe 
constraints and problems to integrate such systems with 
the rotating shaft. There may also be additional prob-
lems arising to implement such systems due to high con-
tact friction and wear in the actuators.  

3.3  Control of spinning rotors with active 
modification of rotating dampers 

If we recall the relation of the instability threshold speed 
)./1( ianth RR+=ωω  the iR  appears in the denomina-

tor which determines the internal damping or damping 
in rotating frame.  Now if by control action, that is by 
feeding back the forces proportional to the velocities in 
rotating frame the effective internal damping, may be 
reduced. This will lead to high values of thω  . One may 
say cieqv RRR −= , where eqvR  is the effective value of 

rotating damping. Original material damping and cR is 
the negative damping created by the control action. With 
this control the effective thw would be  

))/(1( cianth RRR −+= ωω = )/1( eqvan RR+ω .      (11) 
This control has several advantages 
(a) This has to be implemented in a frame rotating 

with the shaft or on the shaft itself. Thus this 
method of smart structures may be effectively 
used.  Piezo actuators, PZT’s, electro-magnetic 
devices. Electromagnetic devices in rotating 
frames may be used for relatively larger rotors. 

(b)  As the limit of cR is from 0 to iR  for whole range 
of spinning speeds the gain values and controller 
actuation forces are also limited  and it does not 
reach a very high unacceptable values. 
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3.4  Development of the Control Law and 
Determination of the Bounding Function 

It has been shown later in the paper that the shaft drawn 
power monotonically increases when the shaft becomes 
unstable. Thus in design of CR  the shaft drawn power 
from the drive from would be used as follows: 

∫ ++=
t

C dtdPdPtPR
0

/)( σεεβα              (12) 

 
The shaft drawn energy per orbit would be  

222 rRARW eqveqvEC πωω ==              (13) 
where r is radius of the orbit. 

 
The shaft center at a speed sec/radnω  and the radius of 
the shaft is r .The time of one orbit in nT ωπ /2= . The 
shaft power drawn would be  

eqvnneqvECC RrrRTWP 22 /2/2/ ωωωππω === . (14) 
The dissipative work per orbit is  

rRRrW eqvanD πω 2)( ∗+=              (15) 

)(2 2
eqvan RRr += ωπ              (16) 

Thus dissipative power would be  
).(/ 22

eqvanDD RRrTWP +== ω              (17) 
Now if one assumes at instability the mass centre trajec-
tory spirals out at a rate much slower rate than the orbit-
ing frequency of the shaft. The shaft power relation may 
be written as  
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The dissipative power is less than regenerative or shaft 
power drawn which is given by the condition  

        PRRr eqvan <+ )(22ω              (19) 
Here it is assumed that the shaft is already in unstable 
range.

∫ <−−−+
t
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Or 
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            (21) 
The above inequality may be arrange as, 

∫ ++≥−−
t
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Taking Laplace transform of both sides, rearranging the 
equation and then taking Laplace inverse transform one 
obtains. 
 
From the above relation we obtain  
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Where £-1() Laplace inverse transform and )0(P  is the 
value of shaft power drawn at time when controller is 
switched on. As the system is time invariant this time 
may be taken as 0=t . 
We denote σωωσωω =−− )(/)( nthiR   

and */ βσβ = ,  σαα /* = . 
Therefore the inequality transforms to 
£-1 ( ) ( )[ ] )(/)0( **2* tPsssP ≥+++ βαβσ              (24) 
It is further assumed that the rotor draws power from the 
drive and never sends it back. In other words rotor is 
always passive when seen from the drive port. 
Denoting £-1 ( ) ( )[ ] )(/)0( **2* tFsssP B≡+++ βαβσ , 

)(tFB  will be called Shaft Power Bounding Function 
(SPBF). the final inequality condition will be 

0)()( ≥≥ tPtFB . 
The requirement is )(tFB  should never be negative. 
Thus the parameters βασ ,,   should be adjusted to 
meet this condition and such that the rotor is stabilized.  
The condition is as ∞→t  0)( →tFa such that the 
bounding function never becomes negative it may be 
proposed that the selection of βασ ,,  be such that both 

the roots of polynomial equations, 0**2 =++ βα ss   
are negative real. Say roots are 1φ−  and 2φ−  with 

12 θθ >  
The bounding function is       
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The nature of this bounding function is very crucial to 
the stabilization of the rotor through drawn power 
modulation. 
 

 
Fig 2: Variation of shaft power bounding function with-
out starting delay with time. 

4  Deployment of Piezo Structures 
as Actuating Element for Stabiliza-
tion of a SDF Pendulum Rotor with 
Smart Coupling. 
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Fig 3: Single degree of freedom pendulum rotor with smart coupling. 

Fig 4: Bond graph model of single degree of freedom pendulum rotor with smart coupling. 
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A simple single degree of freedom system paradigm as 
shown in fig 3 is considered. This system has all the 
essential features which are to be addressed. It com-
prises of a pendulum like rotor. The external dampers 
are directly attached to the mass in two orthogonal direc-
tions in the fixed frame. Isotropic stiffness and internal 
damping rotating with the rotor are lumped in the flexi-
ble coupling connecting the constant speed drive and the 
rotor, just before a self aligning bearing supporting the 
rotor without applying any couple. The sensing and ac-
tuating elements are embedded in the coupling. These 
elements sense the motion and apply negative velocity 
proportional forces with suitable gain modulation in two 
orthogonal directions in a frame rotating with the rotor. 
The sensing and actuating elements may be realized by 
deployment of set of piezo crystals. 
 
While simulating the complete system the piezo–electric 
constant are taken to be roughly NC /10650 12−× , elas-
tic compliance at around Nm /1020 212−× . Output im-
pedance of roughly 500ohms, damping coefficient 
roughly sec/20144NDe =  and permittivity con-

stant 141053.5 ×=ε  are used for simulations. The con-
trol voltages applied across the piezo actuators are as 
follows.  

LrXRxVV rccapx **′−= , and  

LrYRyVV rccapy **′−= . 

Where, ∫ ++=′
t

c dtdpPdtPR
0

)***( σβα .  

 
The physical value of Rc described earlier is related to 

cR′  as ς*cc RR ′=  where ς is voltage to force charac-
teristics of the actuating crystals. xVcap and yVcap  are 
the voltages across the capacitors. These are estimated 
using crystal parameters. LrX r *  and LrYr *  are the 
X and Y components velocities as sensed by the embed-
ded velocity sensors along with piezo actuators in the 
smart stabilizing coupling.  

4.1  Simulation with eccentricity but no 
shaft load. 

In this set of simulations the shaft has eccentricity of 
1.0*10-4m. The shaft however, does no have any rota-
tional viscous load. The fig 5(a) shows X-velocity am-
plitude in fixed frame where as fig 5(b) shows the X-
velocity amplitude in rotating frame as seen by the stabi-
lizing smart coupling. In the fixed frame the vibration 
amplitude settles with residual amplitude. This is due to 
unbalance response of the rotor. In the rotating frame the 
velocity amplitude settles to zero as in this frame the 
unbalance component of velocity is not visible. This is a 
very significant observation. This shows that the pres-
ence of unbalance does no interfere with the active stabi-
lization of the rotor. Figures 5(c) and 5(d) show the ac-
tual and average shaft power drawn by the rotor. 

  

 
 

Fig 5: Dynamic response of stabilized pendulum rotor 
with eccentricity only 

4.2  Perfectly balanced shaft with load. 

For a perfectly (with no eccentricity) the shaft power 
drawn is sum of the power which fosters the whirling 
motion and the power needed by the load. Thus power 
drawn is more than the require towards whirling motion. 
Consequence this is that Rc keeps growing even if the 
shaft amplitudes of vibration for whirl have reached 
nearly zero value. Eventually Rc becomes larger than the 
internal damping Ri and Reqv becomes negative leading 
to the occurrence of eventual reverse whirl which then 
rapidly grows in amplitude. Shaft again becomes unsta-
ble. Following simulation results show various aspects 
of this phenomenon. It may be noted that the rotational 
viscous load on the rotor is extremely small, Rl=8.0*10-7 

Nms. The power drawn by the shaft is presented in two 
consecutive time duration. The fig. 6(c) shows the initial 
phase till the onset of reversed whirl. The fig 6(d) shows 
a period after that when power acquires negative value 
and grows. The eventual buildup of negative power 
means power going from shaft to drive. This power 
comes from the actuator circuit, loading the actuating 
elements which may lead to their damage. 
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Fig 6: Dynamic response of stabilized pendulum rotor 
with shaft load only. 

5  Stabilization by whirl orbital re-
sponse functions. 

For stabilization under all situations viz. rotor with un-
balance and more significantly with shaft load Rc should 
be determined by some response function which is re-
lated to power going for whirling motion only and which 
is not at all related to power which is rendered to the 
shaft load. The orbit area is one such response function. 
However for practical implementation orbit radius in 
rotating frame i.e. 22

rr YX +  as the whirl orbits are cir-
cular with slowly varying radius in rotating frame. Even 
batter response function would be 22

rr YX +  as the 
whirl orbiting speed is the natural frequency of shaft 
without any damping. 
In the following simulations this function is imple-
mented by taking, 

∫ ++=′
t

ampampampc dtdVdtVVR
0

222 )***( σβα  , 

where =ampV 2 ( )2* LrX r + ( )2* LrYr . 
 
The Fig. 7 shows the vibration amplitudes in fixed and 
rotating frames for balance shaft with relatively large 
shaft load, Rl=0.02 Nms. This strategy stabilizes the 
rotor even with such shaft load as expected. The power 
drawn by the shaft fluctuates about the load delivered to 
the load and then settles at this value once the whirl is 
stabilized.  
 

 
 

 
 

 
(c) 

Fig 7: Dynamic response of pendulum stabilized with 
orbit response function-1 rotor with shaft load only. 

 
The fig. 8 shows the response of the same shaft with 
eccentricity of 1.0*10-4 with this proposed stabilizing 
strategy. This is an extremely satisfactory dynamic be-
havior of the rotor. 
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Fig 8: Dynamic response of pendulum stabilized with 
orbit response function-1 rotor with shaft load and ec-

centricity. 

6  Conclusions 

A single degree pendulum like rotor is considered. The 
spinning damping and actuation devices are assumed to 
be lumped in a smart coupling between the drive and the 
rotor. 
 
When the rotor does not drive any load then the shaft 
drawn power is a good information based on which the 
actively contrived negative damping may be modulated 
to counteract the destabilizing rotating damping. It is 
shown the for shafts driving a load the shaft drawn 
power is more than the power responsible for destabili-
zation and this to eventual instability causing the shaft to 
whirl in reverse direction with rapid growth whirl ampli-
tude. 
 
Two orbital response functions are proposed which are 
created by measurements of orthogonal vibration veloc-
ity amplitude in frame rotating with the shaft and the 
contrived negative rotating damping is modulated with 
these signals. It is shown that this way of damping 
modulation leads to extremely stable rotor even in the 
presence of shaft eccentricity and load. 
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